-
摘要: 恶性脑部肿瘤严重威胁着人类生命健康。尽管目前医疗水平与治疗技术均取得了进步,但大多数脑瘤患者的预后仍较差。保护性血脑屏障(blood brain barrier, BBB)的存在会阻碍药物的有效输送,导致治疗效果不佳。伴随纳米技术的突破,能够穿越BBB的多功能纳米药物应运而生,使治疗药物得以有效递送至脑部病灶。综述可克服BBB的纳米药物设计策略,可穿越BBB纳米药物在脑部肿瘤治疗中的最新进展,总结当前纳米药物用于脑部肿瘤治疗中存在的问题和解决策略,旨在为抗脑部肿瘤纳米药物的开发提供参考。Abstract: Malignant brain tumors seriously threaten human health.Despite the great progress in medical treatment with better clinical technology, the prognosis for most brain cancer patients still remains poor.The protective blood brain barrier (BBB) blocks the effective delivery of drugs, leading to the treatment failure of various drugs.Recent breakthroughs in nanotechnology have endowed multifunctional nanomedicines with the ability to cross the BBB, enabling accumulation of therapeutic drugs in brain tumors.This review discusses the design strategies of BBB-crossing nanomedicines and their current progress in brain tumor treatment, and summarizes the existing problems of nanomedicines for brain tumor treatment as well as the potential strategies to overcome these limitations, so as to provide reference for developing nanomedicines for brain tumor treatment.
-
Keywords:
- brain tumor /
- blood brain barrier /
- nanomedicine
-
-
[1] Tang W, Fan W P, Lau J, et al.Emerging blood-brain-barriercrossing nanotechnology for brain cancer theranostics[J]. Chem Soc Rev, 2019, 48(11):2967-3014.
[2] Bray F, Ferlay J, Soerjomataram I, et al.Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA-Cancer J Clin, 2018, 68(6):394-424.
[3] 韩仁强, 周金意, 张思维, 等.2015年中国脑瘤发病与死亡分析[J].中国肿瘤, 2021, 30(1):29-34. [4] Lara-Velazquez M, Alkharboosh R, Norton E S, et al.Chitosanbased non-viral gene and drug delivery systems for brain cancer[J].Front Neurol, 2020, 30(11):740-749.
[5] Bucci M K, Maity A, Janss A J, et al.Near complete surgical resection predicts a favorable outcome in pediatric patients with nonbrainstem, malignant gliomas - results from a single center in the magnetic resonance imaging era[J]. Cancer, 2004, 101(4):817-824.
[6] Younis M, Wang F, Zhao H, et al.Iguratimod encapsulated PLGA-NPs improves therapeutic outcome in glioma, glioma stem-like cells and temozolomide resistant glioma cells[J/OL].Nanomedicine, 2019, 22:102101[2021-04-25].https://doi.org/10.1016/j.nano.2019.102101.
[7] Sidaway P.Brain cancer:temozolomide improves outcomes[J]. Nat Rev Clin Oncol, 2017, 14(11):648.
[8] Grossman S A, Ye X B, Piantadosi S, et al.Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States[J]. Clin Cancer Res, 2010, 16(8):2443-2449.
[9] Das A, Henderson F C, Jr.Alshareef M, et al.MGMT-inhibitor in combination with TGF-β RI inhibitor or CDK 4/6 inhibitor increasestemozolomide sensitivity in temozolomide-resistant glioblastoma cells[J]. Clin Transl Oncol, 2021, 23(3):612-619.
[10] Gandhi H, Sharma A K, Mahant S, et al.Recent advancements in brain tumor targeting using magnetic nanoparticles[J]. Ther Deliv, 2020, 11(2):97-112.
[11] Van Tellingen O, Yetkin-Arik B, De Gooijer M C, et al.Overcoming the blood-brain tumor barrier for effective glioblastoma treatment[J/OL]. Drug Resist Update, 2015, 19:1-12[2021-04-25].https://doi.org/10.1016/j.drup.2015.02.002.
[12] Tam D Y, Ho J W, Chan M S, et al.Penetrating the blood-brain barrier by self-assembled 3D DNA nanocages as drug delivery vehicles for brain cancer therapy[J]. ACS Appl Mater Interfaces, 2020, 12(26):28928-28940.
[13] Nau R, Sorgel F, Eiffert H.Penetration of drugs through the bloodcerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections[J]. Clin Microbiol Rev, 2010, 23(4):858-883.
[14] Li J, Zhao J, Tan T, et al.Nanoparticle drug delivery system for glioma and its efficacy improvement strategies:a comprehensive review[J/OL]. Int J Nanomed, 2020, 15:2563-2582[2021-04-25].https://doi.org/10.2147/IJN.S243223.
[15] Sarin H, Kanevsky A S, Wu H, et al.Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells[J]. J Transl Med, 2008, 6:80-95[2021-04-25].https://doi.org/10.1186/1479-5876-6-80.
[16] Ding S, Khan A I, Cai X, et al.Overcoming blood-brain barrier transport:advances in nanoparticle-based drug delivery strategies[J/OL]. Mater Today, 2020, 37:112-125[2021-04-25].https://doi.org/10.1016/j.mattod.2020.02.001.
[17] Ahlawat J, Barroso G G, Asil S M, et al.Nanocarriers as potential drug delivery candidates for overcoming the blood-brain barrier:challenges and possibilities[J]. ACS Omega, 2020, 5(22):12583-12595.
[18] Chen Y, Liu L.Modern methods for delivery of drugs across the blood-brain barrier[J]. Adv Drug Deliv Rev, 2012, 64(7):640-665.
[19] Ferraris C, Cavalli R, Panciani P P, et al.Overcoming the bloodbrain barrier:successes and challenges in developing nanoparticlemediated drug delivery systems for the treatment of brain tumours[J/OL]. Int J Nanomed, 2020, 15:2999-3022[2021-04-25].https://doi.org/10.2147/IJN.S231479.
[20] Thangudu S, Cheng F Y, Su C H.Advancements in the bloodbrain barrier penetrating nanoplatforms for brain related disease diagnostics and therapeutic applications[J]. Polymers, 2020, 12(12):3055-3077.
[21] Habgood M, Begley D, Abbott N.Determinants of passive drug entry into the central nervous system[J]. Cell Mol Neurobiol, 2000, 20(2):231-253.
[22] Kuang Y, Lackay S N, Zhao L, et al.Role of chemokines in the enhancement of BBB permeability and inflammatory infiltration after rabies virus infection[J]. Virus Res, 2009, 144(1/2):18-26.
[23] Zhang F, Xu C L, Liu C M.Drug delivery strategies to enhance the permeability of the blood-brain barrier for treatment of glioma[J/OL]. Drug Des Devel Ther, 2015, 9:2089-2100[2021-04-25].https://doi.org/10.2147/DDDT.S79592.
[24] Tang W, Fan W, Lau J, et al.Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics[J]. Chem Soc Rev, 2019, 48(11):2967-3014.
[25] Chen H, Zhang W, Zhu G, et al.Rethinking cancer nanotheranostics[J]. Nat Rev Mater, 2017, 2(7):1-18.
[26] Wang J, Tang W, Yang M, et al.Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy[J/OL]. Biomaterials, 2021, 273:120784[2021-04-25].https://doi.org/10.1016/j.biomaterials.2021.120784.
[27] Du D, Chang N, Sun S, et al.The role of glucose transporters in the distribution of p-aminophenyl-α-D-mannopyranoside modified liposomes within mice brain[J/OL]. J Controlled Release, 2014, 182:99-110[2021-04-25].https://doi.org/10.1016/j.jconrel.2014.03.006.
[28] Li J, Guo Y, Kuang Y, et al.Choline transporter-targeting and codelivery system for glioma therapy[J]. Biomaterials, 2013, 34(36):9142-9148.
[29] Li J, Zhou L, Ye D, et al.Choline-derivate-modified nanoparticles for brain-targeting gene delivery[J]. Adv Mater, 2011, 23(39):4516-4520.
[30] Lindqvist A, Rip J, Van Kregten J, et al.In vivo functional evaluation of increased brain delivery of the opioid peptide DAMGO by glutathione-PEGylated liposomes[J]. Pharm Res, 2016, 33(1):177-185.
[31] Anraku Y, Kuwahara H, Fukusato Y, et al.Glycaemic control boosts glucosylated nanocarrier crossing the BBB into the brain[J]. Nature Commun, 2017, 8(1):1001-1009.
[32] Luo Y, Liu X, Liang K, et al.Disulfide bond reversible strategy enables GSH responsive-transferrin nanoparticles for precise chemotherapy[J.OL]. Adv Ther, 2020, 3(10):2000064[2021-04-25].https://doi.org/10.1002/adtp.202000064.
[33] Han L, Liu C, Qi H, et al.Systemic delivery of monoclonal antibodies to the central nervous system for brain tumor therapy[J].Adv Mater, 2019, 31(19):1805697.
[34] Hervé F, Ghinea N, Scherrmann J M.CNS delivery via adsorptive transcytosis[J]. AAPS J, 2008, 10(3):455-472.
[35] Lu W, Tan Y Z, Hu K L, et al.Cationic albumin conjugated pegylated nanoparticle with its transcytosis ability and little toxicity against blood-brain barrier[J]. Int J Pharm, 2005, 295(1/2):247-260.
[36] Bickel U, Yoshikawa T, Pardridge W M.Delivery of peptides and proteins through the blood-brain barrier[J]. Adv Drug DelivRev, 2001, 46(1/2/3):247-279.
[37] Banks W A, Robinson S M, Nath A.Permeability of the bloodbrain barrier to HIV-1 Tat[J]. Exp Neurol, 2005, 193(1):218-227.
[38] Wang T, Meng Z, Kang Z, et al.Peptide gene delivery vectors for specific transfection of glioma cells[J]. ACS Biomater Sci Eng, 2020, 6(12):6778-6789.
[39] Kosztowski T, Zaidi H A, Quiñones-Hinojosa A.Applications of neural and mesenchymal stem cells in the treatment of gliomas[J].Expert Rev Anticancer Ther, 2009, 9(5):597-612.
[40] Wu S Q, Yang C X, Yan X P, A dual-functional persistently luminescent nanocomposite enables engineering of mesenchymal stem cells for homing and gene therapy of glioblastoma[J/OL].Adv Funct Mater, 2017, 27(11):1604992[2021-04-25].https://doi.org/10.1002/adfm.201604992.
[41] Phillipson M, Kubes P.The neutrophil in vascular inflammation[J].Nat Med, 2011, 17(11):1381-1390.
[42] Bernardes-Silva M, Anthony D C, Issekutz A C, et al.Recruitment of neutrophils across the blood-brain barrier:the role of E-and P-selectins[J]. J Cereb Blood Flow Metab, 2001, 21(9):1115-1124.
[43] Xue J, Zhao Z, Zhang L, et al.Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence[J]. Nat Nanotechnol, 2017, 12(7):692-700.
[44] Cai X, Bandla A, Mao D, et al.Biocompatible red gluorescent organic nanoparticles with tunable size and aggregation-induced emission for evaluation of blood-brain barrier damage[J]. Adv Mater, 2016, 28(39):8760-8765.
[45] Chaturbedy P, Kumar M, Salikolimi K, et al.Shape-directed compartmentalized delivery of a nanoparticle-conjugated smallmolecule activator of an epigenetic enzyme in the brain[J/OL]. J Controlled Release, 2015, 217:151-159[2021-04-25].https://doi.org/10.1016/j.jconrel.2015.08.043.
[46] Wiley D T, Webster P, Gale A, et al.Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor[J]. Proc Natl Acad Sci USA, 2013, 110(21):8662-8667.
[47] Nance E A, Woodworth G F, Sailor K A, et al.A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue[J]. Sci Transl Med, 2012, 4(149):119-149.
[48] Song E, Gaudin A, King A R, et al.Surface chemistry governs cellular tropism of nanoparticles in the brain[J/OL]. Nat Commun, 2017, 8:15322[2021-04-25].https://doi.org/10.1038/ncomms15322.
[49] Nichols J W, Bae Y H.EPR:Evidence and fallacy[J/OL]. J Controlled Release, 2014, 190:451-464[2021-04-25].https://doi.org/10.1016/j.jconrel.2014.03.057.
[50] Tan J, Duan X, Zhang F, et al.Theranostic nanomedicine for synergistic chemodynamic therapy and chemotherapy of orthotopic glioma[J]. Adv Sci, 2020, 7(24):2003036-2003051.
[51] Panchagnula R.Pharmaceutical aspects of paclitaxel[J]. Int J Pharm, 1998, 172(1/2):1-15.
[52] Gallo J M, Li S L, Guo P, et al.The effect of P-glycoprotein onpaclitaxel brain and brain tumor distribution in mice[J]. Cancer Res, 2003, 63(16):5114-5117.
[53] Guo J W, Gao X L, Su L N, et al.Aptamer-functionalized PEGPLGA nanoparticles for enhanced anti-glioma drug delivery[J].Biomaterials, 2011, 32(31):8010-8020.
[54] Zou Y, Liu Y J, Yang Z P, et al.Effective and targeted human orthotopic glioblastoma xenograft therapy via a multifunctional biomimetic nanomedicine[J/OL]. Adv Mater, 2018, 30(51):1803717[2021-04-25].https://doi.org/10.1002/adma.201803717.
[55] Caffery B, Lee J S, Alexander-Bryant A A.Vectors for glioblastoma gene therapy:viral & non-viral delivery strategies[J].Nanomaterials, 2019, 9(1):105-120.
[56] Liu Q, Cai J, Zheng Y, et al.NanoRNP overcomes tumor heterogeneity in cancer treatment[J]. Nano Lett, 2019, 19(11):7662-7672.
[57] Wang L, Yuan Y Y, Lin S D, et al.Co-delivery of 5-fluorocytosine and cytosine deaminase into glioma cells mediated by an intracellular environment-responsive nanovesicle[J]. Polym Chem, 2014, 5(15):4542-4552.
[58] Papagiannakopoulos T, Shapiro A, Kosik K S.MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells[J]. Cancer Res, 2008, 68(19):8164-8172.
[59] Gabriely G, Wurdinger T, Kesari S, et al.MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators[J].Mol Cell Biol, 2008, 28(17):5369-5380.
[60] Zhou X, Ren Y, Moore L, et al.Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status[J]. Lab Invest, 2010, 90(2):144-155.
[61] Chan J A, Krichevsky A M, Kosik K S.MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells[J]. Cancer Res, 2005, 65(14):6029-6033.
[62] Li Y, Zhao S, Zhen Y, et al.A miR-21 inhibitor enhances apoptosis and reduces G2-M accumulation induced by ionizing radiation in human glioblastoma U251 cells[J]. Brain Tumor Pathol, 2011, 28(3):209-214.
[63] Seo Y E, Suh H W, Bahal R, et al.Nanoparticle-mediated intratumoral inhibition of miR-21 for improved survival in glioblastoma[J/OL]. Biomaterials, 2019, 201:87-98[2021-04-25].https://doi.org/10.1016/j.biomaterials.2019.02.016.
[64] Li W-B, Ma M W, Dong L J, et al.MicroRNA-34a targets notch1 and inhibits cell proliferation in glioblastoma multiforme[J]. Cancer Biol Ther, 2011, 12(6):477-483.
[65] Shatsberg Z, Zhang X, Ofek P, et al.Functionalized nanogels carrying an anticancer microRNA for glioblastoma therapy[J/OL].J Controlled Release, 2016, 239:159-168[2021-04-25].https://doi.org/10.1016/j.jconrel.2016.08.029.
[66] Liang C, Sun W, He H, et al.Antitumor effect of a new nano-vector with miRNA-135a on malignant glioma[J/OL]. Int J Nanomed, 2018, 13:209-220[2021-04-25].https://doi.org/10.2147/IJN.S148142.
[67] Martin J D, Cabral H, Stylianopoulos T, et al.Improving cancer immunotherapy using nanomedicines:progress, opportunities and challenges[J]. Nat Rev Clin Oncol, 2020, 17(4):251-266.
[68] Irvine D J, Dane E L.Enhancing cancer immunotherapy with nanomedicine[J]. Nat Rev Immunol, 2020, 20(5):321-334.
[69] Yang F, Shi K, Jia Y P, et al.Advanced biomaterials for cancer immunotherapy[J]. Acta Pharmacol Sin, 2020, 41(7):911-927.
[70] Taiarol L, Formicola B, Magro R D, et al.An update of nanoparticle-based approaches for glioblastoma multiforme immunotherapy[J]. Nanomedicine, 2020, 15(19):1861-1871.
[71] Janjua T I, Rewatkar P, Ahmed-Cox A, et al., Frontiers in the treatment of glioblastoma:past, present and emerging[J/OL]. Adv Drug Deliv Rev, 2021, 171:108-138[2021-04-25].https://doi.org/10.1016/j.addr.2021.01.012.
[72] Scheetz L, Kadiyala P, Sun X, et al.Synthetic high-density lipoprotein nanodiscs for personalized immunotherapy against gliomas[J]. Clin Cancer Res, 2020, 26(16):4369-4380.
[73] Khasraw M, Reardon D A, Weller M, et al.PD-1 inhibitors:do they have a future in the treatment of glioblastoma?[J]. Clin Cancer Res, 2020, 26(20):5287-5296.
[74] Yan S, Luo Z, Li Z, et al., Improving cancer immunotherapy outcomes using biomaterials[J]. Angew Chem Int Ed, 2020, 132(40):17484-17495.
[75] Murciano-Goroff Y R, Warner A B, Wolchok J D.The future of cancer immunotherapy:microenvironment-targeting combinations[J]. Cell Res, 2020, 30(6):507-519.
[76] Ruan S, Xie R, Qin L, et al.Aggregable nanoparticles-enabled chemotherapy and autophagy inhibition combined with anti-PD-L1 antibody for improved glioma treatment[J]. Nano Lett, 2019, 19(11):8318-8332.
[77] Samec N, Zottel A, Videtic Paska A, et al.Nanomedicine and immunotherapy:a step further towards precision medicine for glioblastoma[J]. Molecules, 2020, 25(3):490-522.
[78] Bielecki P A, Lorkowski M E, Becicka W M, et al.Immunostimulatory silica nanoparticle boosts innate immunity in brain tumors[J]. Nanoscale Horiz, 2021, 6(2):156-167.
[79] Zhao M, Van Straten D, Broekman M L D, et al.Nanocarrier-based drug combination therapy for glioblastoma[J]. Theranostics, 2020, 10(3):1355-1372.
[80] Zhang S, Wan Y, Pan T, et al.MicroRNA-21 inhibitor sensitizes human glioblastoma U251 stem cells to chemotherapeutic drug temozolomide[J]. J Mol Neurosci, 2012, 47(2):346-356.
[81] Sukumar U K, Bose R J C, Malhotra M, et al.Intranasal delivery of targeted polyfunctional gold-iron oxide nanoparticles loaded with therapeutic microRNAs for combined theranostic multimodality imaging and presensitization of glioblastoma to temozolomide[J/OL]. Biomaterials, 2019, 218:119342[2021-04-25].https://doi.org/10.1016/j.biomaterials.2019.119342.
[82] Meng X Q, Zhao Y, Han B, et al.Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma via attenuating EGFR and MET signaling pathways[J]. Nat Commun, 2020, 11(1):1-15.
[83] Upreti D, Bakhshinyan D, Bloemberg D, et al.Strategies to enhance the efficacy of T-cell therapy for central nervous system tumors[J/OL]. Front Immunol, 2020, 11:599253[2021-04-25].https://doi.org/10.3389/fimmu.2020.599253.
[84] Kadiyala P, Li D, Nunez F M, et al.High-density lipoproteinmimicking nanodiscs for chemo-immunotherapy against glioblastoma multiforme[J]. ACS Nano, 2019, 13(2):1365-1384.
-
期刊类型引用(2)
1. 刘颖,黄冠宁,贺利贞,陈填烽. 基于缺血性脑卒中再灌注损伤机制的抗氧化纳米药物研究进展. 药学进展. 2023(10): 779-789 . 本站查看
2. 董慧钰,高辉,马飞贺. 跨血脑屏障脑部递送策略研究进展. 离子交换与吸附. 2023(06): 546-557 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 232
- HTML全文浏览量: 25
- PDF下载量: 45
- 被引次数: 3