中药牛蒡子主要活性成分微生物转化研究进展

尤文雅,张亚昆,赵逍遥,王秀伶*

(河北农业大学生命科学学院,河北保定071001)

[摘要]牛蒡子为菊科草本植物牛蒡的干燥成熟果实,具有抗炎、抗病毒、抗糖尿病等多种药理功能。目前已知,牛蒡苷和牛蒡苷元是中药牛蒡子的主要活性成分,摄入体内的牛蒡苷或牛蒡苷元可进一步被肠道菌群转化为去甲基牛蒡苷元、肠二醇、肠内酯等多种代谢产物。现有研究表明,牛蒡苷或牛蒡苷元的微生物转化产物具有比牛蒡苷元更高、更广的生物学活性。综述不同产地牛蒡子主要活性成分含量、药代动力学及肠道菌群代谢差异,旨在为牛蒡子主要活性成分微生物转化产物的研究与开发提供参考。

[关键词]牛蒡子;牛蒡苷;牛蒡苷元;微生物转化;代谢

[中图分类号] R284

[文献标志码]A

[文章编号]1001-5094(2020)02-0112-07

Research Progress on the Microbial Bioconversion of Arctii Fructus

YOU Wenya, ZHANG Yakun, ZHAO Xiaoyao, WANG Xiuling

(College of Life Sciences, Hebei Agricultural University, Baoding 071001, China)

[Abstract] Arctii Fructus is the ripe and dry seed of Asteraceae herb (Arctium lappa L.), which has pharmacological activities such as anti-inflammation, anti-virus and anti-diabetes. Plant lignans arctiin and arctigenin, which are the main components of the traditional Chinese herb Arctii Fructus, can be converted to many different kinds of metabolites including demethylated arctigenin, enterodiol and enterolactone, through demethylation and dehydroxylation by animal intestinal flora. Current studies have shown that the microbial transformation products of arctiin or arctigenin have stronger and wider biological activity than arctigenin. This paper reviews the main components, the pharmacokinetics and the microbial bioconversion of Arctii Fructus, so as to accelerate the research and development of microbial metabolites of the main components in Arctii Fructus.

[Key words] Arctii Fructus; arctiin; arctigenin; microbial bioconversion; metabolism

菊科草本植物牛蒡(Arctium lappa L.)具有药食同源性。牛蒡根常作菜用或制作牛蒡茶,具有清热解毒、利尿通便等功效^[1];牛蒡子是牛蒡的干燥成熟果实,具有疏风散热、解毒透疹、利咽消肿等功效^[2]。牛蒡子为我国传统中药,目前报道的牛蒡子的主要生物学活性包括抗炎^[3]、抗癌^[4]、抗糖尿病^[2]、降血脂^[5]、抑菌^[6]、抗病毒^[7]、止咳^[8]、治疗便秘^[9]、免疫活性^[10]、抗氧化^[11]、抗疲劳^[12]、抗肾病^[13]、抗老年痴呆^[14]、抗过敏^[15]、护肝^[16]、抑制 K⁺挛缩^[17]等。临床上,牛蒡子复方制剂可治疗咽炎等上呼吸道炎症、咳嗽和哮喘等肺部不适以及流感病毒引起的多种疾病。

接受日期: 2020-01-26

项目资助: 国家自然科学基金(No. 81973459); 河北省应用

基础研究计划重点基础研究项目(No. 16962504D)

*通讯作者: 王秀伶, 教授;

研究方向: 微生物药物转化, 益生菌资源挖掘与利用;

Tel: 0312-7528259; E-mail: wxling2000@hebau.edu.cn

1 牛蒡子主要活性成分

陈思有等^[18]研究显示,牛蒡子含有木脂素类、挥发油和油脂类成分,其中木脂素类化合物牛蒡苷(arctiin)和牛蒡苷元(arctigenin)是牛蒡子的主要有效成分。此外,马天宇等^[2]研究显示,牛蒡子中还含有少量的生物碱、维生素、氨基酸及蛋白质等。目前已知,牛蒡苷是中药牛蒡子的标志性成分,牛蒡苷的含量为5.3%~7.3%,平均为6.7%;牛蒡苷元的含量为0.5%~1.5%,平均为0.55%^[19]。2015年版《中华人民共和国药典》规定,牛蒡子中牛蒡苷含量不得低于5%。然而,不同产地牛蒡子中的牛蒡苷含量相差较大(见表1)。

从目前已有文献来看,高效液相色谱法是牛蒡苷及牛蒡苷元最主要的检测方法。米靖宇等^[27]对产自黑龙江(哈尔滨)、辽宁(沈阳)、河南(郑州)、山东(青岛)、江苏(南京、苏州)、北京、天津、内蒙古(呼和浩特)、四川(成都)、云南(昆明)、新疆(石河子)、青海(克拉玛依)等地的牛蒡子

中的牛蒡苷进行含量测定,结果显示,牛蒡子样品中的牛蒡苷含量以产地昆明最高(8.02%),产地郑州的最低(4.07%),其余产地牛蒡苷含量均介于5.47%~7.07%之间。邵晶等^[28]对吉林、四川(康定)、河南、甘肃(定西、临洮、平凉、和政、庆阳、甘南)等地的牛蒡子样品中的牛蒡苷含量进行测定,结果显示,除平凉牛蒡子中的牛蒡苷含量较低外(3.96%),其余产地牛蒡苷含量在5.86%~7.95%之间。王劲^[25]对黑龙江(哈尔滨)、长春、辽宁(灯塔、葫芦岛)、山东(青岛)、广东(广州)、四川(成都、阿坝、简阳)、贵州和新疆等地的牛蒡子样品中的

牛蒡苷含量进行测定,结果显示,这些产地的样品中牛蒡苷含量均在 8%以上。另外,陈思有等^[18]对黑龙江(五常)、吉林(梅河口、辽源、通化、延吉)、辽宁(岫岩、宽甸)、内蒙古(山民)、重庆、陕西(太白)、甘肃(会川)等不同产地牛蒡子中的牛蒡苷和牛蒡苷元进行含量测定,结果显示,所有样品中牛蒡苷含量均在 13%以上。根据杨亮蕊等^[31]对云南昭通锦屏村、次山乡、昭阳区、大理银桥等 4个地区牛蒡子样品中牛蒡苷和牛蒡苷元的测定显示,牛蒡苷的含量极低(0.069 1%~0.153 5%)。目前,有关影响牛蒡子中牛蒡苷含量的因素尚不清楚。

表 1 不同产地牛蒡子中牛蒡苷和牛蒡苷元的含量比较

Table 1 Comparison of arctiin and arctigenin contents in Arctii Fructus from different places

区域	省份	牛蒡苷含量 /%	牛蒡苷元含量 /%	参考文献
东北	黑龙江	2.57~13.23	0.15~1.52	[18, 20]
	吉林	0.62~13.95	$0.04 \sim 1.00$	[18, 20-21]
	辽宁	2.43~13.73	0.12~1.01	[18, 22-23]
西北	新疆	5.00~8.09	0.11~0.29	[24-25]
	青海	5.49~6.90	0.97	[26-27]
	甘肃	3.96~13.42	0.09~0.79	[18, 20, 28]
	陕西	6.17~13.73	0.15~0.69	[18, 20, 28]
华北	内蒙古	5.71~13.44	0.18~0.69	[18, 20, 27]
	河北	2.02~7.28	0.37~1.90	[20, 22, 24, 29]
	北京	6.05~7.07	0.15	[27, 29]
	天津	6.37~7.64	0.86	[27, 30]
西南	四川	5.05~12.77	0.12~1.01	[20, 25]
	云南	$0.07 \sim 8.02$	$0.05 \sim 0.48$	[27, 31]
	贵州	3.17~9.21	0.52~0.89	[20, 23, 25]
华中	河南	4.07~7.35	0.14~1.24	[20, 27, 31]
	湖北	0.50~6.59	0.16~0.46	[20, 24]
华东	山东	1.73~8.73	0.29~2.00	[20, 27, 30, 32]
	安徽	4.20~8.80	0.93	[20, 33-34]
	江苏	2.32~5.97	0.46~0.93	[22-23, 27]
	浙江	1.67~7.79	0.22~0.90	[20]
华南	广西	6.04	-	[29]
	广东	9.21	2.34	[25]

2 牛蒡苷和牛蒡苷元药代动力学研究

吕佳^[35] 对牛蒡苷元在小鼠胃肠道吸收动力学、家兔体内的血浆药物动力学以及大鼠脏器分布状况等进行了研究。其中,小鼠胃肠道吸收实验结果显示,牛蒡苷元在胃肠道内较为稳定;另外,家兔静脉注射的牛蒡苷元浓度不同,牛蒡苷元在体内的消除动力学也各不相同,静脉注射低浓度(610 mg·kg⁻¹)时,

牛蒡苷元的消除符合线性动力学模型,而静脉注射浓度较高时,牛蒡苷元在家兔体内消除较快;给大鼠灌胃牛蒡苷元 24 h 后检测发现,约 0.423%的牛蒡苷元从大鼠尿液中排出,0.11%从粪中排出;组织分布实验结果显示,牛蒡苷元广泛分布在肝、肺、心、脾、肾等组织中,其中在肝、肺中的含量较高,但在脑组织中未检测到牛蒡苷元。郑一敏等^[36]用

300 mg·kg⁻¹牛蒡苷灌胃大鼠后发现,其药物动力学 行为符合二室模型, 血浆内检测到牛蒡苷是在经口 给药 5 min 后,消除现象发生在 30 min 后;牛蒡苷 在大鼠肝脏中分布最多,并在心、肾及脑部组织均 有分布。类似地、胥秀英等[37]研究结果显示、给小 鼠灌胃牛蒡子后, 牛蒡苷在不同组织分布浓度由高 到低顺序为肝、肾、心、脑。韩舒等[38]研究显示, 给大鼠皮下注射牛蒡苷元(0.3 mg kg-1)后,在肠、心、 肝、胰、肾等组织中均检测到原形药物。何斌等[39] 对牛蒡苷元在仔猪体内的药代动力学研究结果显示, 牛蒡苷元静脉注射后血药浓度与时间符合无吸收二 室模型,这不同于吕佳[35]报道的家兔静注牛蒡苷元 后其药代动力学行为属无吸收单室模型。袁媛[40]对 牛蒡子水提物的药代动力学研究结果显示,给大鼠 灌胃牛蒡子水提物后,在大鼠的尿液和粪便中均检 测到了不同于牛蒡苷元的其他成分。此外, 窦德强[41] 研究结果显示, 胃肠道是牛蒡苷的主要代谢器官, 而肝没有参与代谢。

3 牛蒡苷和牛蒡苷元微生物转化研究

3.1 哺乳动物粪样菌群对牛蒡苷的转化

现有研究结果表明,被哺乳动物摄入体内的牛蒡苷(1)可被脱糖转化为牛蒡苷元(2),这是牛蒡苷在机体内发生的第一步代谢反应。Nose等 [42] 将底物牛蒡苷与小鼠粪样菌群共培养 24 h 后,在培养物中检测到了大量牛蒡苷元,表明大部分底物牛

蒡苷的 4′位葡萄糖基已被脱掉。Wang 等 [43] 研究结果再次证实,小鼠粪样菌群对牛蒡苷具有脱糖转化作用。除小鼠粪样菌群外,将人粪样菌群与牛蒡苷共培养后发现,人粪样菌群同样可以将底物牛蒡苷转化为牛蒡苷元 [44-45]。

除上述脱糖转化外, Nose 等[42] 还发现小鼠粪 样菌群对脱糖转化产物牛蒡苷元具有进一步转化 能力, 经结构鉴定发现, 小鼠粪样菌群能将底物 牛蒡苷元3'位甲基脱去,生成3'-去甲基-牛蒡苷元 (3'-desmethylarctigenin, 3'-DMAG, **3**); 由于 3'-DMAG 为非天然产物,推测小鼠粪样菌群分泌的 相关酶类将底物牛蒡苷元脱甲基转化为3'-DMAG。 Wang 等 [43] 研究结果显示,除牛蒡苷元和 3'-DMAG 外, 小鼠粪样菌群转化底物牛蒡苷后的代谢产物还 包括 3'-去甲基-4'-去羟基牛蒡苷元(4)等。除小鼠 粪样菌群外, Heinonen 等[44]于 2001年首次证实, 人粪样菌群能将底物牛蒡苷转化为多种不同代谢产 物,经产物分离鉴定发现,底物牛蒡苷可被人粪样 菌群转化为牛蒡苷元以及牛蒡苷元去甲基和去羟基 产物。2003年 Xie 等[45] 从牛蒡苷与人粪样菌群共培 养物中分离得到6种牛蒡苷的不同代谢产物,即牛 蒡苷元、3'-DMAG、3'-去甲基-4'-去羟基牛蒡苷元、3', 3"-去甲基-4'-去羟基牛蒡苷元(5)、3',3",4"-去 甲基-4'-去羟基牛蒡苷元(6)和肠内酯(enterolactone, 7);此外,根据代谢产物的化学结构,推测了牛蒡 苷被人肠道菌群代谢的过程(见图1)。

图 1 牛蒡苷被人肠道菌群代谢的可能途径 [45]

Figure 1 Proposed metabolic pathway of the substrate arctiin by human intestinal flora

3.2 牛蒡苷或牛蒡苷元转化菌株的分离与筛选

2007年 Jin 等 [46] 将人粪样菌群与底物牛蒡苷 元共培养,首次分离得到一株对牛蒡苷元有转化功 能的微生物纯培养物,经菌种鉴定,将分离得到的 纯培养物鉴定为厌氧真细菌属的一个新分类单元, 即菌株 Eubacterium sp. ARC-2。研究结果显示, 在厌氧环境下与底物牛蒡苷元共培养 62 h 后,菌 株 ARC-2 能将底物牛蒡苷元转化为二羟基肠内酯 (dihydroxyenterolactone)、3′-O-甲基醚二羟基肠 内 酯 (dihydroxyenterolactone 3'-O-methyl ether)、 3"-O-甲基醚二羟基肠内酯 (dihydroxyenterolactone 3"-O-methyl ether)、4"-O-甲基醚二羟基肠内酯 (dihydroxyenterolactone 4"-O-methyl ether) \, 4"-去甲基牛蒡苷元(4"-desmethylarctigenin)、3'-DMAG 以及 3"-去甲基牛蒡苷元 (3"-desmethylarctigenin) 等7种不同代谢产物。仅从高效液相色谱图所示代 谢产物峰的峰面积来看, 3"-去甲基牛蒡苷元和 4"-O-甲基醚二羟基肠内酯这2种产物的峰面积较大; 通 过硅胶柱对产物进行分离,并对得到的各代谢产物 进行量化分析显示,菌株 ARC-2 代谢底物牛蒡苷元 后生成的二羟基肠内酯和 4"-O-甲基醚二羟基肠内 酯的含量最多。另外,值得一提的是菌株 ARC-2 代 谢底物牛蒡苷元所牛成的7种代谢产物中并不包括 肠内酯。

2013 年笔者实验室从人粪样菌群中分离得到一株能将底物牛蒡苷或牛蒡苷元高效转化为 3'-DMAG 的严格厌氧细菌菌株,经菌种鉴定,将分离得到的菌株鉴定为布劳特菌属(Blautia)的一个新分类单元,并将菌株命名为 Blautia sp. AUH-JLD56^[47]。2017 年,笔者实验室以 3'-DMAG 为底物,分离得到对 3'-DMAG 具有转化功能的单一细菌菌株 Eggerthella sp. AUH-JLD49s,该菌株为严格厌氧细菌菌株;菌株 AUH-JLD49s 在厌氧条件下能将底物 3'-DMAG 转化为单一产物 3'-去甲基-4'-去羟基-牛蒡苷元(3'-desmethyl-4'-dehydroxyarctigenin,DMDH-AG)[48]。

肠内酯是一种具有类似动物雌激素活性的物质,因其化学结构中含有手性碳原子,故肠内酯为手性化合物(见图1)。肠内酯在自然界中并不

存在,只能由木酚素类化合物经动物肠道菌群代谢后生成。研究者已分离得到能将油料作物亚麻籽中的木酚素——开环异落叶松树脂酚二葡萄糖(secoisolariciresinol diglucoside,SDG)转化为肠内酯的特定细菌菌株 [49-50],然而,已分离得到的菌株代谢 SDG 后只生成少量肠内酯,大部分产物为肠内酯合成的前体物质肠二醇。以药食两用植物牛蒡子中的标志性成分牛蒡苷为底物,利用哺乳动物粪样菌群转化生成肠内酯虽已有报道,但将牛蒡苷转化为肠内酯的单一微生物菌株目前国内外尚鲜见报道。

4 牛蒡苷元代谢产物的合成与活性研究

李馥睿等 [51]2011 年报道了产物 3'-DMAG 的 化学合成方法,但由于合成过程需添加有恶臭和强 刺激性的吡啶,加之化学合成反应步骤多,所需成 本相对较高,目前尚鲜见市场销售化学合成的 3'-DMAG。迄今,除人工合成的肠内酯有销售外,目前图 1 中涉及的牛蒡苷元的其他代谢产物均鲜见销售。由于 3'-DMAG 及 DMDH-AG 等产物匮乏,有 关牛蒡苷元代谢产物的活性报道目前非常有限。Jin 等 [52]2013 年利用菌株 Eubacterium sp. ARC-2 在厌氧条件下合成牛蒡苷元的不同代谢产物,并分析牛蒡苷元以及 7 个代谢产物与雌激素受体 ERa 的亲和力。结果显示,代谢产物对 ERa 的亲和力大小与底物被脱去的甲基的数目有关,其中脱掉 2 个甲基的代谢产物对 ERa 的亲和力均显著高于脱掉 1 个甲基的代谢产物对 ERa 的亲和力均显著高于脱掉 1 个甲基的代谢产物对 ERa 的亲和力均显著高于脱掉 1 个甲基的代谢产物。

为进一步研究牛蒡苷元代谢产物的活性,笔者实验室通过高效液相色谱法制备了产物 3'-DMAG,并对比分析了底物牛蒡苷元和产物 3'-DMAG 对 DPPH 自由基的体外清除能力。结果显示,在 0.025 ~ 0.100 mmol·L¹ 范围时,产物 3'-DMAG 对 DPPH 自由基的清除能力均显著高于底物牛蒡苷元(P<0.01),但购买的肠内酯对 DPPH 自由基的体外清除能力明显较弱 [47]。另外,产物 3'-DMAG 对人肝癌细胞株HepG2 具有明显的体外抑制作用,可影响 HepG2 的细胞周期,并诱导线粒体内凋亡的发生;小鼠体内实验研究结果显示,产物 3'-DMAG 显著抑制了小鼠体内肿瘤的生长,且未表现出任何毒性 [53]。由于

菌株 Blautia sp. AUH-JLD56 为严格厌氧细菌,制备产物 3'-DMAG 必须在严格厌氧环境下进行,而长期维持严格厌氧环境则需要大量资金投入。为此,笔者实验室正在对菌株 AUH-JLD56 进行耐氧驯化尝试,以期获得在有空气氧条件下既能生长,同时又具有转化活性的耐氧突变株。

在牛蒡苷元所有代谢产物中, 只有终产物肠内 酯目前可进行人工化学合成,但由于合成步骤多, 且产物纯化困难,导致肠内酯目前售价较高。在肠 内酯的生物合成方面,杨东辉等[54]利用哺乳动物 肠道菌群转化木酚素为肠二醇和肠内酯, 哺乳动物 肠道菌群经传代50次后对转化结果无明显影响, 但不足之处是肠道菌群在厌氧环境中转化木酚素为 肠内酯的产率较低(低于30%)。另外,转化SDG 为肠内酯的单一细菌菌株虽已有报道, 但已报道的 菌株转化木酚素为肠内酯的能力极低, 肠内酯尚不 能通过已分离得到的菌株进行生物合成。目前已 知,肠内酯具有调节激素平衡、抗氧化、抗癌、降 低心血管发病率、减少骨质流失以及缓解脂多糖诱 发性炎症等多种生理功能[55-57]。肠内酯为手性化合 物,分布于油料作物亚麻籽中的木酚素 SDG 为右 旋 SDG, 经哺乳动物粪样菌群转化后生成的肠内酯 为右旋肠内酯 [58-59]; 牛蒡子中的牛蒡苷为左旋牛蒡 苷, 经哺乳动物粪样菌群转化后生成的肠内酯为左 旋肠内酯^[59]。由于化合物资源匮乏,有关右旋肠内酯和左旋肠内酯在药理或生理功能上的差异目前尚不清楚。

5 结语

人体肠道内寄居着种类繁多、数量庞大的微生 物菌群, 肠道菌群能否保持平衡对维持人体健康至 关重要。目前已知, 日常饮食、长期压力、行为习 惯以及抗生素使用等多种因素均会对肠道菌群产生 影响。汤剂口服剂型为中药临床主要使用方式,中 药在机体代谢的必经之路为消化道。现有研究结果 显示,单一成分、单味中药和中药复方对肠道菌群 均有不同程度的调节作用,且调节作用主要是通过 促进有益菌生长和抑制有害菌的过度增殖来实现, 有关其他方面的调节机制尚有待进一步研究。另一 方面,大量研究结果证实,肠道菌群中的某些特定 菌株对中药活性成分具有代谢功能, 如单味中药牛 蒡子,其主要活性成分经人肠道细菌菌株代谢后可 生成7种不同代谢产物,由于这些代谢物具有不同 于底物牛蒡苷元的生物学活性,中药本身的药效将 因肠道菌群的代谢而发生改变。反过来,中药经这 些微生物代谢所得产物是否又会继续影响人肠道菌 群的构成或其他方面,目前尚鲜见相关报道。

[参考文献]

- [1] Li K, Zhu L, Li H, *et al.* Structural characterization and rheological properties of a pectin with anti-constipation activity from the roots of *Arctium lappa* L[J]. *Carbohydr Polym*, 2019, 215: 119-129.
- [2] 马天宇, 陈燕平, 程素盼, 等. 牛蒡子研究进展 [J]. 辽宁中医药 大学学报, 2018, 20(9): 113-116.
- [3] Zhang N, Wang Y, Kan J, et al. In vivo and in vitro antiinflammatory effects of water-soluble polysaccharide from Arctium lappa[J]. Int J Biol Macromol, 2019, 135: 717-724.
- [4] Han Y H, Kee J Y, Kim D S, *et al.* Arctii Fructus inhibits colorectal cancer cell proliferation and MMPs mediated invasion via AMPK[J]. *Am J Chin Med*, 2017, 45(6): 1309-1325.
- [5] 陈会敏,徐安莉,黄陈伟,等.牛蒡子对实验性高脂血症大鼠 降血脂效应及其机理研究[J].中华中医药学刊,2010,28(3):

626-627.

- [6] 张丽珉,赵琳,韩啸,等. 牛蒡子总木脂素提取纯化工艺及纯 化前后体外抑菌作用研究[J]. 化学工程师,2018,32(12):82-86, 38.
- [7] 张雨.19种化合物抗大口黑鲈弹状病毒活性筛选 [D]. 杨凌:西北农林科技大学,2019:51.
- [8] 袁媛. 牛蒡子止咳袪痰药效物质基础研究 [J]. 辽宁中医杂志, 2011, 38(3): 516-519.
- [9] 张波,徐德会,陈智敏.牛蒡子治疗氯氮平所致便秘及流涎[J]. 中国民间疗法,2001,9(11):35-36.
- [10] 米靖宇, 宋纯清. 牛蒡子中木脂素类化合物的抗肿瘤及免疫活性 [J]. 时珍国医国药, 2002, 13(3): 168-169.
- [11] 付兴芹, 张惠, 张青青, 等. 牛蒡子苷元对 ConA 诱导小鼠急性

- 肝炎的保护作用 [J]. 青岛大学学报 (医学版), 2018, 54(3): 268-272.
- [12] 娄春善,曹建民,郭娴,等.牛蒡子对运动训练大鼠睾酮及相关激素含量和抗运动疲劳能力的影响[J].中国实验方剂学杂志, 2015,21(4):153-157.
- [13] 蔡景英,王育斌,李华,等.牛蒡子对糖尿病大鼠肾组织基质 细胞衍生因子 1 表达的影响 [J]. 武汉大学学报(医学版),2010,31(6):746-749.
- [14] Huang J, Xiao L, Wei J X, *et al.* Protective effect of arctigenin on ethanol-induced neurotoxicity in PC12 cells[J]. *Mol Med Rep*, 2017, 15(4): 2235-2240.
- [15] Kee J Y, Hong S H. Inhibition of mast cell-mediated allergic responses by Arctii Fructus extracts and its main compound arctigenin[J]. J Agric Food Chem, 2017, 65(43): 9443-9452.
- [16] 冯芹. 小鼠急性肝损伤及牛蒡子苷元保护作用的研究 [D]. 南京: 南京大学, 2018: 189.
- [17] Yang S, Ma J, Xiao J, *et al*. Arctigenin anti-tumor activity in bladder cancer T24 cell line through induction of cell-cycle arrest and apoptosis[J]. *Anat Rec*, 2012, 295(8): 1260-1266.
- [18] 陈思有,杨燕云,许亮,等.牛蒡子果皮与种仁中牛蒡苷及牛蒡苷无的含量测定比较[J].亚太传统医药,2017,13(14):37-40.
- [19] 许润春,苏拓僮,马鸿雁. HPLC 梯度洗脱同时测定牛蒡子液体制剂中牛蒡子苷和牛蒡子苷元的含量 [J]. 现代生物医学进展, 2007, 7(7): 1084-1085.
- [20] 秦昆明. 牛蒡子质量评价及炮制过程化学成分变化规律研究 [D]. 南京: 南京中医药大学, 2015: 189.
- [21] 孙艳涛,赵兰英,李婷婷,等.高效液相色谱切换波长法同时测定牛蒡子中活性成分的含量[J]. 医药导报,2014,33(1):100-102.
- [22] 张咏梅,张月婵,刘晓燕.高效液相色谱法测定不同厂家牛蒡子中牛蒡苷的含量[J]. 现代中药研究与实践,2010,24(6):82-83.
- [23] 王劲,沙明,杨洪武,等. HPLC 法对不同地区商品牛蒡子中牛蒡苷元的定量分析[J]. 中草药, 2003, 34(5): 467-468.
- [24] 袁媛,窦德强,康廷国.不同产地牛蒡子药材质量评价 [J]. 世界科学技术-中医药现代化,2008,10(3):75-77.
- [25] 王劲. 牛蒡子抗病毒有效部位研究 [D]. 沈阳: 沈阳中医药大学, 2004: 160.
- [26] 宋平顺,赵建邦,丁永辉.不同产地栽培牛蒡子的质量考察[J].

- 甘肃中医, 2008, 21(12): 43-44.
- [27] 米靖宇, 汪志超, 宋纯清. 高效液相色谱法测定不同采购地牛蒡子中牛蒡子苷和苷元的含量 [J]. 时珍国医国药, 2004, 15(11): 737-739
- [28] 邵晶,郭玫,王志旺,等.甘肃产牛蒡子的质量评价研究[J].中 国现代应用药学,2016,33(10):1272-1276.
- [30] 许亮,张建逵,卢淑君,等.牛蒡子药材中内果皮石细胞与牛蒡苷含量相关性研究[J]. 时珍国医国药,2015,26(4):812-815.
- [31] 杨亮蕊,胡建勇,杞伶俐,等.高效液相色谱法测定牛蒡子中牛蒡苷和牛蒡苷元的含量[J].中国医院用药评价与分析,2016,16(S1):53-54.
- [32] 邵晶,倪京满,赵磊,等.七个不同产地牛蒡子中牛蒡苷的含量比较[J]. 甘肃中医学院学报,2009,26(2):41-43.
- [33] 陈黎,周晓萌,张秀华,等.不同牛蒡子中牛蒡苷的鉴别及含量考察[J].中国药师,2011,14(1):63-65.
- [34] 徐华玲, 尹宁宁. 山东地区药用牛蒡子的质量评价 [J]. 齐鲁 药事, 2009, 28(8): 465-466.
- [35] 吕佳. 牛蒡苷元药物动力学研究 [D]. 沈阳: 辽宁中医学院, 2002: 55.
- [36] 郑一敏,蔡绍晳,胥秀英,等.牛蒡子苷代谢动力学与分布研究(英文)[J].中国现代应用药学,2006,23(4):265-267.
- [37] 胥秀英,郑一敏,傅善权,等.牛蒡子苷在小鼠体内的分布状态及药代动力学研究[J]. 时珍国医国药,2006,17(5):698-699.
- [38] 韩舒,谷元,杨元辉,等.牛蒡子苷元大鼠皮下注射给药后的血浆动力学及组织分布研究[J].烟台大学学报(自然科学与工程版),2017,30(2):131-137.
- [39] 何斌,吴利军,陈夏冰,等.牛蒡苷元在仔猪体内的药物动力 学研究[J].中国兽药杂志,2019,53(11):72-77.
- [40] 袁媛. 牛蒡子质量控制方法及其水提物药代动力学和药效动力学研究 [D]. 沈阳: 辽宁中医药大学, 2009: 146.
- [41] 窦德强. 牛蒡苷及苷元药物代谢及结构修饰研究 [C]// 中国化学会第十届全国天然有机化学学术会议论文集 第二分会场: 天然产物全合成和结构修饰. 北京: 中国化学会, 2014: 18.
- [42] Nose M, Fujimoto T, Takeda T, *et al.* Structural transformation of lignan compounds in rat gastrointestinal tract[J]. *Planta Med*, 1992, 58(6): 520-523.
- [43] Wang W, Pan Q, Han X Y, et al. Simultaneous determination

- of arctiin and its metabolites in rat urine and feces by HPLC[J]. *Fitoterapia*, 2013, 86: 6-12.
- [44] Heinonen S, Nurmi T, Liukkonen K, et al. In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol[J]. J Agri Food Chem, 2001, 49(7): 3178-3186.
- [45] Xie L H, Ahn E M, Akao T, *et al.* Transformation of arctiin to estrogenic and antiestrogenic substances by human intestinal bacteria[J]. *Chem Pharm Bull*, 2003, 51(4): 378-384.
- [46] Jin J S, Zhao Y F, Nakamura N, et al. Isolation and characterization of a human intestinal bacterium, Eubacterium sp. ARC-2, capable of demethylating arctigenin, in the essential metabolic process to enterolactone[J]. Bio Pharm Bull, 2007, 30(5): 904-911.
- [47] Liu M Y, Li M, Wang X L, et al. Study on human intestinal bacterium *Blautia* sp. AUH-JLD56 for the conversion of arctigenin to (-)-3'-desmethylarctigenin[J]. *J Agric Food Chem*, 2013, 61(49): 12060-12065.
- [48] Wang Y, Yu F, Liu M Y, *et al.* Isolation and characterization of a human intestinal bacterium *Eggerthella* sp.AUH-JLD49s for the conversion of (–)-3'-desmethylarctigenin[J]. *J Agric Food Chem*, 2017, 65(20): 4051-4056.
- [49] Wang L Q, Meselhy M R, Li Y, et al. Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans, enterodiol and enterolactone[J]. Chem Pharm Bull (Tokyo), 2000, 48(11): 1606-1610.
- [50] Clavel T, Henderson G, Alpert C A, *et al.* Intestinal bacterial communities that produce active estrogen-like compounds enterodiol and enterolactone in humans[J]. *Appl Environ Microbiol*, 2005, 71(10): 6077-6085.

- [51] 李馥睿, 窦德强, 陈桂荣, 等. 牛蒡苷元的脱甲基化研究 [J]. 辽宁中医药大学学报, 2011, 13(4): 30-33.
- [52] Jin J S, Lee J H, Hattori M. Ligand binding affinities of arctigenin and its demethylated metabolites to estrogen receptor alpha[J]. *Molecules*, 2013, 18(1): 1122-1127.
- [53] Zhang E, Wang X, Liu X, et al. 3'-Desmethylarctigenin induces G₂/M cell cycle arrest and apoptosis through reactive oxygen species generation in hepatocarcinoma cells[J]. *Phytother Res*, 2019, 33(12): 3218-3227.
- [54] 杨东辉,刘树林,库宝善.一种生产肠二醇和肠内酯的方法:中国,200810104215.2[P].2009-10-21.
- [55] Rienks J, Barbaresko J, Nöthlings U. Association of polyphenol biomarkers with cardiovascular disease and mortality risk: a systematic review and meta-analysis of observational studies[J]. *Nutrients*, 2017, 9(4): E415. Doi: 10.3390/nu9040415.
- [56] Advani S, Wimalawansa S J. Bones and nutrition: common sense supplementation for osteoporosis[J]. *Curr Womens Health Rep*, 2003, 3(3): 187-192.
- [57] Johnson S L, Kirk R D, DaSilva N A, et al. Polyphenol microbial metabolites exhibit gut and blood-brain barrier permeability and protect murine microglia against LPS-induced inflammation[J]. Metabolites, 2019, 9(4): E78. Doi: 10.3390/metabo9040078.
- [58] Xie L H, Ahn E M, Akao T, *et al.* Transformation of arctiin to estrogenic and antiestrogenic substances by human intestinal bacteria[J]. *Chem Pharm Bull*, 2003, 51(4): 378-384.
- [59] Jin J S, Zhao Y F, Nakamura N, *et al*. Enantioselective dehydroxylation of enterodiol and enterolactone precursors by human intestinal bacteria[J]. *Biol Pharm Bull*, 2007, 30(11): 2113-2119.

[专家介绍]王秀伶:博士,教授,博导。河北农业大学微生物学科带头人,制药工程专业负责人,中国微生物学会医学微生物学与免疫学专业委员会委员,河北省微生物学会常务理事,河北省研究生教育指导委员会理学分委员会委员。2010年人选第二批河北省高校百名优秀创新人才支持计划,2015年荣获"全国师德标兵"荣誉称号。

主要研究方向: 1) 微生物药物转化; 2) 益生菌资源挖掘与利用。主持国家自然科学基金面上项目 5 项,河北省应用基础研究计划重点基础研究项目 1 项。以第一作者或通讯作者在 Applied and Environmental Microbiology、Journal of Agricultural and Food Chemistry、Applied Microbiology and Biotechnology 等国内外期

刊发表论文 50 余篇, 其中 SCI 收录 13 篇;以第一专利发明人获国家授权发明专利 15 项。