-
摘要: 阿尔茨海默病(Alzheimer's disease,AD)是老年人群中最常见的一种慢性神经退行性疾病。目前AD发病机制尚不明确,鉴于AD的复杂病因,多靶点药物是AD领域的重要研究方向;靶向β淀粉样蛋白(amyloid β-protein,Aβ)的分子荧光探针对AD早期诊断具有重要的临床和现实意义。查尔酮是一种天然产物,具有多种药理活性,值得进一步深入开发。根据公开发表的文献,从乙酰胆碱酯酶、氧化应激、单胺氧化酶B、Aβ聚集等方面对查尔酮及其衍生物作为多靶点AD治疗药物和诊断剂Aβ荧光探针进行总结,以期为AD的治疗和诊断提供重要线索和理论依据。Abstract: Alzheimer's disease (AD) is the most common chronic progressive neurodegenerative disease in elder people. At present, the pathogenesis of AD is still unclear. Due to the complex pathogenesis of AD, multi-target drugs are an important research direction for AD therapies. In addition, the development of imaging probes targeting amyloid β-protein (Aβ) plaque plays a key role in the early diagnosis of AD. Chalcone is a natural compound with diverse biological activities that deserves further development. According to the current literature, the development of chalcone and its derivatives into multi-target AD therapies and diagnostic Aβ imaging probes was summarized based on their activities on acetycholinesterase (AChE) inhibition, antioxidation, monoamine oxidase B (MAO-B) inhibition, Aβ aggregation inhibition, so as to provide useful information and theoretical basis for AD treatment and diagnosis.
-
Keywords:
- Alzheimer's disease /
- chalcone derivatives /
- β-amyloid /
- multi-target drug /
- imaging probe
-
-
[1] Livingston G, Sommerlad A, Orgeta V, et al. Dementia prevention, intervention, and care[J]. Lancet, 2017, 390(10113):2673-2734.
[2] Alzheimer's Disease International. World Alzheimer report 2015:the global impact of dementia[R/OL].[2018-03-30]. https://www.alz.co.uk/research/world-report-2015.
[3] 郭静静,廖红. 阿尔茨海默病治疗药物的研究进展[J]. 中国药科大学学报, 2010, 41(5):395-400. [4] Fang J, Li Y, Liu R, et al. Discovery of multitarget-directed ligands against Alzheimer's disease through systematic prediction of chemicalprotein interactions[J]. J Chem Inf Model, 2015, 55(1):149-164.
[5] De Freitas Silva M, Dias K S T, Gontijo V S, et al. Multi-target-directed drugs as a modern approach for drug design towards Alzheimer's disease:an update[J]. Curr Med Chem, 2018, 25(29):3491-3525.
[6] Zhou K, Bai H, Feng L, et al. Smart D-π-A type near-infrared Aβ probes:effects of a marked π bridge on optical and biological properties[J]. Anal Chem, 2017, 89(17):9432-9437.
[7] Matos M, Vazquez-Rodriquez S, Uriarte E, et al. Potential pharmacological uses of chalcones:a patent review (from June 2011-2014)[J]. Expert Opin Ther Pat, 2015, 25(3):351-366.
[8] Singh P, Anand A, Kumar V. Recent developments in biological activities of chalcones:a mini review[J/OL]. Eur J Med Chem, 2014, 85:758-777[2018-03-30]. https://doi.org/10.1016/j.ejmech.2014.08.033.
[9] Sheng R, Lin X, Zhang J, et al. Design, synthesis and evaluation of flavonoid derivatives as potent AChE inhibitors[J]. Bioorg Med Chem, 2009, 17(18):6692-6698.
[10] Liu H, Zhou C, Fan H, et al. Novel potent and selective acetylcholinesterase inhibitors as potential drugs for the treatment of Alzheimer's disease:synthesis, pharmacological evaluation, and molecular modeling of amino-alkyl-substituted fluoro-chalcones derivatives[J/OL]. Chem Biol Drug Des, 2015, 86:517-522[2018-03-30]. https://doi.org/10.1111/cbdd.12514.
[11] Belluti F, Rampa A, Piazzi L, et al. Cholinesterase inhibitors:xanthostigmine derivatives blocking the acetylcholinesterase-induced beta-amyloid aggregation[J]. J Med Chem, 2005, 48(13):4444-4456.
[12] Rampa A, Montanari S, Pruccoli L, et al. Chalcone-based carbamates for Alzheimer's disease treatment[J]. Fut Med Chem, 2017, 9(8):749-764.
[13] Liu H, Fan H, Gao X, et al. Design, synthesis and preliminary structureactivity relationship investigation of nitrogen-containing chalcone derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors:a further study based on flavokawain B mannich base derivatives[J]. J Enzyme Inhib Med Chem, 2016, 31(4):580-589.
[14] Wang L, Wang Y, Tian Y, et al. Design, synthesis, biological evaluation, and molecular modeling studies of chalcone-rivastigmine hybrids as cholinesterase inhibitors[J]. Bioorg Med Chem, 2017, 25(1):360-371.
[15] Xiao G, Li Y, Qiang X, et al. Design, synthesis and biological evaluation of 4'-aminochalcone-rivastigmine hybrids as multifunctional agents for the treatment of Alzheimer's disease[J]. Bioorg Med Chem, 2017, 25(3):1030-1041.
[16] Kim M J, Lee Y H, Kwak J, et al. Protective effects of a chalcone derivative against Aβ-induced oxidative stress and neuronal damage[J]. BMC Rep, 2011, 44(11):730-734.
[17] Edmondson D E, Binda C. Monoamine oxidases[J/OL]. Subcell Biochem, 2018, 87:117-139[2018-03-30]. https://doi.org/10.1007/978-981-10-7757-9_5.
[18] Borroni E, Bohrmann B, Grueninger F, et al. Sembragiline:anovel, selective monoamine oxidase type B inhibitor for the treatment of Alzheimer's disease[J]. J Pharmacol Exp Ther, 2017, 362(3):413-423.
[19] Weinreb O, Amit T, Bar-Am O, et al. Neuroprotective effects of multifaceted hybrid agents targeting MAO, cholinesterase, iron and β-amyloid in ageing and Alzheimer's disease[J]. Br J Pharmacol, 2016, 173(13):2080-2094.
[20] Ng K, Pascoal T, Mathotaarachchi S, et al. Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain[J/OL]. Alzheimers Res Ther, 2017, 9(1):25[2018-03-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5374697/. Doi: 10.1186/s13195-017-0253-y.
[21] Mathew B, Mathew G, Uçar G, et al. Development of fluorinated methoxylatedchalcones as selective monoamine oxidase-B inhibitors:synthesis, biochemistry and molecular docking studies[J/OL]. Bioorg Chem, 2015, 62:22-29[2018-03-20]. https://doi.org/10.1016/j.bioorg.2015.07.001.
[22] Morales-Camilo N, Salas C, Sanhueza C, et al. Synthesis, biological evaluation, and molecular simulation of chalcones and aurones as selective MAO-B inhibitors[J]. Chem Biol Drug Des, 2015, 85(6):685-695.
[23] Lee E, Eom J, Kim H, et al. Effect of conjugated linoleic acid, μ-calpain inhibitor, on pathogenesis of Alzheimer's disease[J]. Biochim Biophys Acta, 2013, 1831(4):709-718.
[24] Wu Z, Ni J, Liu Y, et al. Cathepsin B plays a critical role in inducing Alzheimer's disease-like phenotypes following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis in mice[J/OL]. Brain Behav Immun, 2017, 65:350-361[2018-03-30]. https://doi.org/10.1016/j.bbi.2017.06.002.
[25] Jeon K, Lee E, Jun K, et al. Neuroprotective effect of synthetic chalcone derivatives as competitive dual inhibitors against μ-calpain and cathepsin B through the downregulation of tau phosphorylation and insoluble Aβ peptide formation[J/OL]. Eur J Med Chem, 2016, 121:433-444[2018-03-20]. https://doi.org/10.1016/j.ejmech.2016.06.008.
[26] Cao Z, Yang J, Xu R, et al. Design, synthesis and evaluation of 4'-OHflurbiprofen-chalcone hybrids as potential multifunctional agents for Alzheimer's disease treatment[J]. Bioorg Med Chem, 2018, 26(5):1102-1115.
[27] Ono M, Haratake M, Mori H, et al. Novel chalcones as probes for in vivo imaging of β-amyloid plaques in Alzheimer's brains[J]. Bioorg Med Chem, 2007, 15(21):6802-6809.
[28] Ono M, Maya Y, Haratake M, et al. Aurones serve as probes of β-amyloid plaques in Alzheimer's disease[J]. Biochem Biophys Res Commun, 2007, 361(1):116-121.
[29] Ono M, Watanabe R, Kawashima H, et al. Fluoro-pegylatedchalcones as positron emission tomography probes for in vivo imaging of β-amyloid plaques in Alzheimer's disease[J]. J Med Chem, 2009, 52(20):6394-6401.
[30] Ono M, Ikeoka R, Watanabe H, et al. Synthesis and evaluation of novel chalcone derivatives with 99mTc/Re complexes as potential probes for detection of β-amyloid plaques[J]. ACS Chem Neurosci, 2010, 1(9):598-607.
[31] Fuchigami T, Yamashita Y, Haratake M, et al. Synthesis and evaluation of ethyleneoxylated and allyloxylatedchalcone derivatives for imaging of amyloid β plaques by SPECT[J]. Bioorg Med Chem, 2014, 22(9):2622-2628.
[32] Cui M, Ono M, Kimura H, et al. Synthesis and biological evaluation of indole-chalcone derivatives as β-amyloid imaging probe[J]. Bioorg Med Chem Lett, 2011, 21(3):980-982.
-
期刊类型引用(0)
其他类型引用(1)
计量
- 文章访问数: 910
- HTML全文浏览量: 32
- PDF下载量: 47
- 被引次数: 1