-
摘要: 金属酶广泛存在于各种生物体,与人类疾病发生发展密切相关,是一大类重要的药物作用靶标。尽管已有若干靶向金属酶抑制剂批准用于临床,但大多数金属酶还缺乏特异性药物分子或尚未开发,靶向金属酶的创新药物研究仍然是目前重要领域之一。鉴于金属酶活性位点含金属离子的特殊性,金属酶抑制剂通常包含与活性位点金属离子形成配位的金属结合药效特征(MBP)。通过对挖掘的MBP数据进行归类总结,列举部分经典与少见的MBP类型,并分析对金属酶的选择性和杂泛性,期望能为靶向金属酶的创新药物研究提供线索和借鉴。Abstract: Metalloenzymes are widely distributed in a variety of organisms, and closely related with human diseases, which hence are considered as a wide range of important drug targets. Although several inhibitors targeting metalloenzymes have been approved for clinical use, there are a lack of drug candidates or high-quality inhibitors for most metalloenzymes, of which even many have not been exploited. Discovery of novel drugs targeting metalloenzymes is still one of important fields. Due to the distinctiveness of metal ions-containing active sites of metalloenzymes, the metalloenzyme inhibitors often bear a specific chemical moiety that is positioned to coordinate with active site metal ions, which is termed metal-binding pharmacophore (MBP). This review summarized the MBP data extracted from metalloenzyme-ligand interaction analyses, enumerated some classic MBPs, and analyzed the metalloenzyme selectivity and promiscuity. These information will provide clues and references for future innovative drug discovery targeting metalloenzymes.
-
-
[1] Chen A Y, Adamek R N, Dick B L, et al. Targeting metalloenzymes for therapeutic intervention[J]. Chem Rev, 2019, 119(2):1323-1455.
[2] Cohen S M. A bioinorganic approach to fragment-based drug discovery targeting metalloenzymes[J]. Acc Chem Res, 2017, 50(8):2007-2016.
[3] Bush K, Bradford P A. Interplay between β-lactamases and new β-lactamase inhibitors[J]. Nat Rev Microbiol, 2019, 17(5):295-306.
[4] Platten M, Nollen E A A, Röhrig U F, et al. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond[J]. Nat Rev Drug Discov, 2019, 18(5):379-401.
[5] Yan Y H, Li G, Li G B. Principles and current strategies targeting metallo-β-lactamase mediated antibacterial resistance[J]. Med Res Rev, 2020, 40(5):1558-1592.
[6] Natesh R, Schwager S L U, Evans H R, et al. Structural details on the binding of antihypertensive drugs captopril and enalaprilat to human testicular angiotensin i-converting enzyme[J]. Biochemistry, 2004, 43(27):8718-8724.
[7] Freund Y R, Akama T, Alley M R K, et al. Boron-based phosphodiesterase inhibitors show novel binding of boron to pde4 bimetal center[J]. FEBS Lett, 2012, 586(19):3410-3414.
[8] Li G, Su Y, Yan Y H, et al. Melad:an integrated resource for metalloenzyme-ligand associations[J]. Bioinformatics, 2020, 36(3):904-909.
[9] Miyake Y, Keusch J J, Wang L L, et al. Structural insights into hdac6 tubulin deacetylation and its selective inhibition[J]. Nat Chem Biol, 2016, 12(9):748-754.
[10] Hai Y, Christianson D W. Histone deacetylase 6 structure and molecular basis of catalysis and inhibition[J]. Nat Chem Biol, 2016, 12(9):741-747.
[11] Fabre B, Ramos A, de Pascual-Teresa B. Targeting matrix metalloproteinases:exploring the dynamics of the s1' pocket in the design of selective, small molecule inhibitors[J]. J Med Chem, 2014, 57(24):10205-10219.
[12] Lovejoy B, Welch A R, Carr S, et al. Crystal structures of mmp-1 and -13 reveal the structural basis for selectivity of collagenase inhibitors[J]. Nat Struct Mol Biol, 1999, 6(3):217-221.
[13] Kohno T, Hochigai H, Yamashita E, et al. Crystal structures of the catalytic domain of human stromelysin-1(mmp-3) and collagenase-3(mmp-13) with a hydroxamic acid inhibitor sm-25453[J]. Biochem Biophys Res Commun, 2006, 344(1):315-322.
[14] Nar H, Werle K, Bauer M M, et al. Crystal structure of human macrophage elastase (mmp-12) in complex with a hydroxamic acid inhibitor[J]. J Mol Biol, 2001, 312(4):743-751.
[15] Antoni C, Vera L, Devel L, et al. Crystallization of bi-functional ligand protein complexes[J]. J Struct Biol, 2013, 182(3):246-254.
[16] Decroos C, Christianson D W. Design, synthesis, and evaluation of polyamine deacetylase inhibitors, and high-resolution crystal structures of their complexes with acetylpolyamine amidohydrolase[J]. Biochemistry, 2015, 54(30):4692-4703.
[17] Fieulaine S, De Sousa R A, Maigre L, et al. A unique peptide deformylase platform to rationally design and challenge novel active compounds[J]. Sci Rep, 2016, 6:35429[2020-07-10]. https://www.nature.com/articles/srep35429. Doi: 10.1038/srep35429.
[18] Piizzi G, Parker D T, Peng Y S, et al. Design, synthesis, and properties of a potent inhibitor of pseudomonas aeruginosa deacetylase lpxc[J]. J Med Chem, 2017, 60(12):5002-5014.
[19] Kurbanov E K, Chiu T L, Solberg J, et al. Probing the s2' subsite of the anthrax toxin lethal factor using novel n-alkylated hydroxamates[J]. J Med Chem, 2015, 58(21):8723-8733.
[20] Mazzola Jr R D, Zhu Z N, Sinning L, et al. Discovery of novel hydroxamates as highly potent tumor necrosis factor-α converting enzyme inhibitors. Part Ⅱ:optimization of the s3' pocket[J]. Bioorg Med Chem Lett, 2008, 18(21):5809-5814.
[21] Tortorella M D, Tomasselli A G, Mathis K J, et al. Structural and inhibition analysis reveals the mechanism of selectivity of a series of aggrecanase inhibitors[J]. J Biol Chem, 2009, 284(36):24185-24191.
[22] Leissring M A, Malito E, Hedouin S, et al. Designed inhibitors of insulin-degrading enzyme regulate the catabolism and activity of insulin[J]. PLoS One, 2010, 5(5):e10504[2020-07-10]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0010504.
[23] Thompson A A, Jiao G S, Kim S, et al. Structural characterization of three novel hydroxamate-based zinc chelating inhibitors of the clostridium botulinum serotype a neurotoxin light chain metalloprotease reveals a compact binding site resulting from 60/70 loop flexibility[J]. Biochemistry, 2011, 50(19):4019-4028.
[24] Vinh N B, Drinkwater N, Malcolm T R, et al. Hydroxamic acid inhibitors provide cross-species inhibition of plasmodium m1 and m17 aminopeptidases[J]. J Med Chem, 2019, 62(2):622-640.
[25] Mistry S N, Drinkwater N, Ruggeri C, et al. Two-pronged attack:dual inhibition of plasmodium falciparum m1 and m17 metalloaminopeptidases by a novel series of hydroxamic acid-based inhibitors[J]. J Med Chem, 2014, 57(21):9168-9183.
[26] Grams F, Crimmin M, Hinnes L, et al. Structure determination and analysis of human neutrophil collagenase complexed with a hydroxamate inhibitor[J]. Biochemistry, 1995, 34(43):14012-14020.
[27] Lang R, Kocourek A, Braun M, et al. Substrate specificity determinants of human macrophage elastase (mmp-12) based on the 1.1Å crystal structure[J]. J Mol Biol, 2001, 312(4):731-742.
[28] Lang R, Braun M, Sounni N E, et al. Crystal structure of the catalytic domain of mmp-16/mt3-mmp:characterization of mt-mmp specific features[J]. J Mol Biol, 2004, 336(1):213-225.
[29] Garcia-Castellanos R, Tallant C, Marrero A, et al. Substrate specificity of a metalloprotease of the pappalysin family revealed by an inhibitor and a product complex[J]. Arch Biochem Biophys, 2007, 457(1):57-72.
[30] Mosyak L, Georgiadis K, Shane T, et al. Crystal structures of the two major aggrecan degrading enzymes, adamts4 and adamts5[J]. Protein Sci, 2008, 17(1):16-21.
[31] Hall T, Shieh H S, Day J E, et al. Structure of human adam-8 catalytic domain complexed with batimastat[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2012, 68(Pt 6):616-621.
[32] Ganji R J, Reddi R, Gumpena R, et al. Structural basis for the inhibition of m1 family aminopeptidases by the natural product actinonin:crystal structure in complex with E. Coli aminopeptidase N[J]. Protein Sci, 2015, 24(5):823-831.
[33] Ghilarov D, Serebryakova M, Stevenson C E M, et al. The origins of specificity in the microcin-processing protease tldd/e[J]. Structure, 2017, 25(10):1549-1561.e5.
[34] Kim H M, Shin D R, Yoo O J, et al. Crystal structure of drosophila angiotensin i-converting enzyme bound to captopril and lisinopril[J]. FEBS Lett, 2003, 538(1-3):65-70.
[35] Orning L, Krivi G, Bild G, et al. Inhibition of leukotriene a4 hydrolase/aminopeptidase by captopril[J]. J Biol Chem, 1991, 266(25):16507-16511.
[36] King D T, Worrall L J, Gruninger R, et al. New delhi metallo-β-lactamase:structural insights into β-lactam recognition and inhibition[J]. J Am Chem Soc, 2012, 134(28):11362-11365.
[37] Starus A, Nocek B, Bennett B, et al. Inhibition of the dape-encoded n-succinyl-l,l-diaminopimelic acid desuccinylase from neisseria meningitidis by l-captopril[J]. Biochemistry, 2015, 54(31):4834-4844.
[38] Brem J, Van Berkel S S, Zollman D, et al. Structural basis of metallo-beta-lactamase inhibition by captopril stereoisomers[J]. Antimicrob Agents Chemother, 2015, 60(1):142-150.
[39] Li G B, Brem J, Lesniak R, et al. Crystallographic analyses of isoquinoline complexes reveal a new mode of metallo-beta-lactamase inhibition[J]. Chem Commun (Camb), 2017, 53(43):5806-5809.
[40] Liu S, Jing L, Yu Z J, et al. ((s)-3-mercapto-2-methylpropanamido)acetic acid derivatives as metallo-beta-lactamase inhibitors:synthesis, kinetic and crystallographic studies[J]. Eur J Med Chem, 2018, 145:649-660.[2020-07-10]. https://pubmed.ncbi.nlm.nih.gov/29353720/. Doi: 10.1016/j.ejmech.2018.01.032.
[41] Wang YL, Liu S, Yu Z J, et al. Structure-based development of (1-(3'-mercaptopropanamido)methyl)boronic acid derived broad-spectrum, dual-action inhibitors of metallo-and serine-β-lactamases[J]. J Med Chem, 2019, 62(15):7160-7184.
[42] Hinchliffe P, González M M, Mojica M F, et al. Cross-class metallo-beta-lactamase inhibition by bisthiazolidines reveals multiple binding modes[J]. Proc Natl Acad Sci U S A, 2016, 113(26):E3745-3754.
[43] Büttner D, Kramer J S, Klingler F-M, et al. Challenges in the development of a thiol-based broad-spectrum inhibitor for metallo-β-lactamases[J]. ACS Infect Dis, 2018, 4(3):360-372.
[44] Cain R, Brem J, Zollman D, et al. In silico fragment-based design identifies subfamily b1 metallo-beta-lactamase inhibitors[J]. J Med Chem, 2018, 61(3):1255-1260.
[45] Adler M, Bryant J, Buckman B, et al. Crystal structures of potent thiol-based inhibitors bound to carboxypeptidase b[J]. Biochemistry, 2005, 44(26):9339-9347.
[46] Fernandez D, Testero S, Vendrell J, et al. The x-ray structure of carboxypeptidase a inhibited by a thiirane mechanism-based inhibitor[J]. Chem Biol Drug Des, 2010, 75(1):29-34.
[47] Yoshimoto N, Itoh T, Inaba Y, et al. Structural basis for inhibition of carboxypeptidase b by selenium-containing inhibitor:Selenium coordinates to zinc in enzyme[J]. J Med Chem, 2013, 56(19):7527-7535.
[48] Testero S A, Granados C, Fernández D, et al. Discovery of mechanism-based inactivators for human pancreatic carboxypeptidase a from a focused synthetic library[J]. ACS Med Chem Lett, 2017, 8(10):1122-1127.
[49] Bandarage U K, Wang T, Come J H, et al. Novel thiol-based tace inhibitors. Part 2:Rational design, synthesis, and sar of thiol-containing aryl sulfones[J]. Bioorg Med Chem Lett, 2008, 18(1):44-48.
[50] Porter N J, Shen S, Barinka C, et al. Molecular basis for the selective inhibition of histone deacetylase 6 by a mercaptoacetamide inhibitor[J]. ACS Med Chem Lett, 2018, 9(12):1301-1305.
[51] Labiuk S L, Sygusch J, Grochulski P. Structures of soluble rabbit neprilysin complexed with phosphoramidon or thiorphan[J]. Acta Crystallogr F Struct Biol Commun, 2019, 75(Pt 6):405-411.
[52] Gaucher J F, Selkti M, Tiraboschi G, et al. Crystal structures of alpha-mercaptoacyldipeptides in the thermolysin active site:structural parameters for a ZN monodentation or bidentation in metalloendopeptidases[J]. Biochemistry, 1999, 38(39):12569-12576.
[53] Schönauer E, Kany A M, Haupenthal J, et al. Discovery of a potent inhibitor class with high selectivity toward clostridial collagenases[J]. J Am Chem Soc, 2017, 139(36):12696-12703.
[54] Kany A M, Sikandar A, Haupenthal J, et al. Binding mode characterization and early in vivo evaluation of fragment-like thiols as inhibitors of the virulence factor lasb from pseudomonas aeruginosa[J]. ACS Infect Dis, 2018, 4(6):988-997.
[55] Tang W, Li H Y, Doud E H, et al. Mechanism of inactivation of neuronal nitric oxide synthase by (s)-2-amino-5-(2-(methylthio)acetimidamido)pentanoic acid[J]. J Am Chem Soc, 2015, 137(18):5980-5989.
[56] Driggers C M, Kean K M, Hirschberger L L, et al. Structure-based insights into the role of the cys-tyr crosslink and inhibitor recognition by mammalian cysteine dioxygenase[J]. J Mol Biol, 2016, 428(20):3999-4012.
[57] Roach P L, Clifton I J, Hensgens C M, et al. Structure of isopenicillin n synthase complexed with substrate and the mechanism of penicillin formation[J]. Nature, 1997, 387(6635):827-830.
[58] Ubhi D, Kago G, Monzingo A F, et al. Structural analysis of a fungal methionine synthase with substrates and inhibitors[J]. J Mol Biol, 2014, 426(8):1839-1847.
[59] Mast N, Charvet C, Pikuleva I A, et al. Structural basis of drug binding to cyp46a1, an enzyme that controls cholesterol turnover in the brain[J]. J Biol Chem, 2010, 285(41):31783-31795.
[60] Montemiglio L C, Gianni S, Vallone B, et al. Azole drugs trap cytochrome p450 eryk in alternative conformational states[J]. Biochemistry, 2010, 49(43):9199-9206.
[61] Strushkevich N, Usanov S A, Park H W. Structural basis of human cyp51 inhibition by antifungal azoles[J]. J Mol Biol, 2010, 397(4):1067-1078.
[62] Agnew C R J, Warrilow A G S, Burton N M, et al. An enlarged, adaptable active site in cyp164 family p450 enzymes, the sole p450 in mycobacterium leprae[J]. Antimicrob Agents Chemother, 2012, 56(1):391-402.
[63] Tyndall J D A, Sabherwal M, Sagatova A A, et al. Structural and functional elucidation of yeast lanosterol 14alpha-demethylase in complex with agrochemical antifungals[J/OL]. PLoS One, 2016, 11(12):e0167485[2020-07-10]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167485.
[64] Strushkevich N, Gilep A A, Shen L M, et al. Structural insights into aldosterone synthase substrate specificity and targeted inhibition[J]. Mol Endocrinol, 2013, 27(2):315-324.
[65] Jeffreys L N, Poddar H, Golovanova M, et al. Novel insights into p450 bm3 interactions with FDA-approved antifungal azole drugs[J/OL]. Sci Rep, 2019, 9(1):1577[2020-07-10]. https://www.nature.com/articles/s41598-018-37330-y. Doi: 10.1038/s41598-018-37330-y.
[66] Mukherjee P, Li H Y, Sevrioukova I, et al. Novel 2,4-disubstituted pyrimidines as potent, selective, and cell-permeable inhibitors of neuronal nitric oxide synthase[J]. J Med Chem, 2015, 58(3):1067-1088.
[67] Davey D D, Adler M, Arnaiz D, et al. Design, synthesis, and activity of 2-imidazol-1-ylpyrimidine derived inducible nitric oxide synthase dimerization inhibitors[J]. J Med Chem, 2007, 50(6):1146-1157.
[68] Mucha O, Podkalicka P, Mikulski M, et al. Development and characterization of a new inhibitor of heme oxygenase activity for cancer treatment[J]. Arch Biochem Biophys, 2019, 671:130-142[2020-07-10]. https://pubmed.ncbi.nlm.nih.gov/31276659/. Doi: 10.1016/j.abb.2019.07.002.
[69] Deng G H, Zhao B W, Ma Y L, et al. Novel complex crystal structure of prolyl hydroxylase domain-containing protein 2(PHD2):2,8-diazaspiro[4.5] decan-1-ones as potent, orally bioavailable PHD2 inhibitors[J]. Bioorg Med Chem, 2013, 21(21):6349-6358.
[70] Bunnage M E, Blagg J, Steele J, et al. Discovery of potent & selective inhibitors of activated thrombin-activatable fibrinolysis inhibitor for the treatment of thrombosis[J]. J Med Chem, 2007, 50(24):6095-6103.
[71] Sun X C, Wasley J W F, Qiu J, et al. Discovery of s-nitrosoglutathione reductase inhibitors:potential agents for the treatment of asthma and other inflammatory diseases[J]. ACS Med Chem Lett, 2011, 2(5):402-406.
[72] Koch B, Kolenko P, Buchholz M, et al. Crystal structures of glutaminyl cyclases (qcs) from drosophila melanogaster reveal active site conservation between insect and mammalian qcs[J]. Biochemistry, 2012, 51(37):7383-7392.
[73] De Santi C, Giulianotti P C, Pietrabissa A, et al. Catechol-o-methyltransferase:variation in enzyme activity and inhibition by entacapone and tolcapone[J]. Eur J Clin Pharmacol, 1998, 54(3):215-219.
[74] Bonifácio M J, Archer M, Rodrigues M L, et al. Kinetics and crystal structure of catechol-o-methyltransferase complex with co-substrate and a novel inhibitor with potential therapeutic application[J]. Mol Pharmacol, 2002, 62(4):795-805.
[75] Ellermann M, Jakob-Roetne R, Lerner C, et al. Molecular recognition at the active site of catechol-o-methyltransferase:Energetically favorable replacement of a water molecule imported by a bisubstrate inhibitor[J]. Angew Chem Int Ed Engl, 2009, 48(48):9092-9096.
[76] Matera I, Ferraroni M, Kolomytseva M, et al. Catechol 1,2-dioxygenase from the gram-positive rhodococcus opacus 1cp:quantitative structure/activity relationship and the crystal structures of native enzyme and catechols adducts[J]. J Struct Biol, 2010, 170(3):548-564.
[77] Ferraroni M, Kolomytseva M, Scozzafava A, et al. X-ray structures of 4-chlorocatechol 1,2-dioxygenase adducts with substituted catechols:new perspectives in the molecular basis of intradiol ring cleaving dioxygenases specificity[J]. J Struct Biol, 2013, 181(3):274-282.
[78] Steegborn C, Litvin T N, Hess K C, et al. A novel mechanism for adenylyl cyclase inhibition from the crystal structure of its complex with catechol estrogen[J]. J Biol Chem, 2005, 280(36):31754-31759.
[79] Erlandsen H, Flatmark T, Stevens R C, et al. Crystallographic analysis of the human phenylalanine hydroxylase catalytic domain with bound catechol inhibitors at 2.0Å resolution[J]. Biochemistry, 1998, 37(45):15638-15646.
[80] Carcelli M, Rogolino D, Gatti A, et al. N-acylhydrazone inhibitors of influenza virus pa endonuclease with versatile metal binding modes[J]. Sci Rep, 2016, 6:31500[2020-07-10]. https://pubmed.ncbi.nlm.nih.gov/27510745/. Doi: 10.1038/srep31500.
[81] Fudo S, Yamamoto N, Nukaga M, et al. Two distinctive binding modes of endonuclease inhibitors to the N-terminal region of influenza virus polymerase acidic subunit[J]. Biochemistry, 2016, 55(18):2646-2660.
[82] Wang W L, Chai S C, Huang M, et al. Discovery of inhibitors of Escherichia coli methionine aminopeptidase with the Fe(II)-form selectivity and antibacterial activity[J]. J Med Chem, 2008, 51(19):6110-6120.
[83] Kawatani M, Okumura H, Honda K, et al. The identification of an osteoclastogenesis inhibitor through the inhibition of glyoxalase I[J]. Proc Natl Acad Sci U S A, 2008, 105(33):11691-11696.
[84] Zhang H, Zhai J, Zhang L P, et al. In vitro inhibition of glyoxalase I by flavonoids:new insights from crystallographic analysis[J]. Curr Top Med Chem, 2016, 16(4):460-466.
[85] Yano J K, Denton T T, Cerny M A, et al. Synthetic inhibitors of cytochrome P-4502A6:inhibitory activity, difference spectra, mechanism of inhibition, and protein cocrystallization[J]. J Med Chem, 2006, 49(24):6987-7001.
[86] Devore N M, Scott E E. Structures of cytochrome p45017a1 with prostate cancer drugs abiraterone and TOK-001[J]. Nature, 2012, 482(7383):116-119.
[87] Wang A, Savas U, Hsu M H, et al. Crystal structure of human cytochrome p4502D6 with prinomastat bound[J]. J Biol Chem, 2012, 287(14):10834-10843.
[88] Choi J Y, Calvet C M, Gunatilleke S S, et al. Rational development of 4-aminopyridyl-based inhibitors targeting trypanosoma cruzi cyp51 as anti-chagas agents[J]. J Med Chem, 2013, 56(19):7651-7668.
[89] Chen C K, Doyle P S, Yermalitskaya L V, et al. Trypanosoma cruzi CYP51 inhibitor derived from a mycobacterium tuberculosis screen hit[J/OL]. PLoS Negl Trop Dis, 2009, 3(2):e372[2020-07-10]. https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0000372.
[90] Xu L H, Liu H T, Murray B P, et al. Cobicistat (gs-9350):a potent and selective inhibitor of human cyp3a as a novel pharmacoenhancer[J]. ACS Med Chem Lett, 2010, 1(5):209-213.
[91] Samuels E R, Sevrioukova I. Inhibition of human CYP3a4 by rationally designed ritonavir-like compounds:impact and interplay of the side group functionalities[J]. Mol Pharm, 2018, 15(1):279-288.
[92] Horton J R, Liu X, Gale M, et al. Structural basis for KDM5A histone lysine demethylase inhibition by diverse compounds[J]. Cell Chem Biol, 2016, 23(7):769-781.
[93] Westaway S M, Preston A G, Barker M D, et al. Cell penetrant inhibitors of the KDM4 and KDM5 families of histone lysine demethylases. 1. 3-amino-4-pyridine carboxylate derivatives[J]. J Med Chem, 2016, 59(4):1357-1369.
[94] Chen Y K, Bonaldi T, Cuomo A, et al. Design of KDM4 inhibitors with antiproliferative effects in cancer models[J]. ACS Med Chem Lett, 2017, 8(8):869-874.
[95] Zhang Z, Jakkaraju S, Blain J, et al. Cytidine derivatives as IspF inhibitors of burkolderia pseudomallei[J]. Bioorg Med Chem Lett, 2013, 23(24):6860-6863.
[96] Li H, Hallows W H, Punzi J S, et al. Crystallographic studies of isosteric NAD analogs bound to alcohol dehydrogenase:specificity and substrate binding in two ternary complexes[J]. Biochemistry, 1994, 33(39):11734-11744.
-
期刊类型引用(2)
1. 高璐,褚志文,李国菠. 基于药物化学课程内容的新药研发前沿案例构建——循环系统药物章节案例教学举例. 大学化学. 2023(12): 25-31 . 百度学术
2. 余俊霖,李国菠. 计算机辅助金属酶靶向药物发现的研究进展. 中国现代应用药学. 2022(21): 2828-2833 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 1136
- HTML全文浏览量: 64
- PDF下载量: 89
- 被引次数: 3