创新链/学科链/研发链/产业链

新药研发前沿动态 / 医药领域趋势进展

T细胞受体工程化T细胞疗法的临床研究及动物肿瘤模型的应用

王琨, 汪金姣, 王皞鹏

王琨, 汪金姣, 王皞鹏. T细胞受体工程化T细胞疗法的临床研究及动物肿瘤模型的应用[J]. 药学进展, 2021, 45(8): 574-584.
引用本文: 王琨, 汪金姣, 王皞鹏. T细胞受体工程化T细胞疗法的临床研究及动物肿瘤模型的应用[J]. 药学进展, 2021, 45(8): 574-584.
WANG Kun, WANG Jinjiao, WANG Haopeng. Clinical Research on T Cell Receptor-Engineered T Cells Therapy and Application of Its Preclinical Animal Models[J]. Progress in Pharmaceutical Sciences, 2021, 45(8): 574-584.
Citation: WANG Kun, WANG Jinjiao, WANG Haopeng. Clinical Research on T Cell Receptor-Engineered T Cells Therapy and Application of Its Preclinical Animal Models[J]. Progress in Pharmaceutical Sciences, 2021, 45(8): 574-584.

T细胞受体工程化T细胞疗法的临床研究及动物肿瘤模型的应用

基金项目: 

国家重点研发计划(No.2019YFA0111001)

详细信息
    作者简介:

    王琨: 王皞鹏:上海科技大学生命科学与技术学院教授、博士生导师。2003年毕业于南京大学匡亚明学院,获理学学士学位;2004年进入圣裘德儿童研究医院/田纳西健康医学中心攻读博士研究生学位;2009-2015年,加州大学旧金山分校博士后。2015年被上海科技大学聘为研究员、博士生导师。2015年入选"国家青年千人计划",2018年获得"中科院分子细胞科学卓越创新中心青年骨干"称号。

    汪金姣: 王皞鹏教授长期聚焦于"T细胞信号转导与工程化"的研究,2018年利用CRISPR全基因组遗传筛选,系统性地研究了T细胞激活的分子机制,绘制了人类T细胞功能的调控图谱。该工作是世界上首次报道的基于T细胞功能调控的全基因组CRISPR筛选;2020年通过研究CAR受体蛋白在CAR-T中运输降解的调控机制,设计了一种新型的可循环CAR,显著地提高了CAR-T的体内持续能力和抗肿瘤效果,为防止CAR-T治疗后肿瘤的复发提供了新策略。可循环CAR-T技术已于2020年底成功完成技术转让,预计于2021年开展可循环CAR-T相关的临床试验。

    王皞鹏: 作为课题组负责人正在主持1项科技部国家重点研发计划项目,1项国家自然科学基金面上项目,1项罗氏制药合作项目。目前已在Science,Cell,Immunity,Nature Method,PNAS,EMBO等国际期刊上发表论文25篇,其中第一作者文章5篇,共同通讯作者文章5篇,申请专利4项。

    通讯作者:

    王皞鹏, 教授

  • 中图分类号: Q789;R730.51

Clinical Research on T Cell Receptor-Engineered T Cells Therapy and Application of Its Preclinical Animal Models

More Information
    Corresponding author:

    WANG Haopeng, 教授

  • 摘要: T细胞受体工程化T细胞(T cell receptor-engineered T cells,TCR-T)疗法和嵌合抗原受体T细胞(chimeric antigen receptor T cells,CAR-T)疗法是2种过继性细胞疗法(adoptive cell therapy,ACT),它们通过基因修饰技术赋予天然T细胞特异性识别肿瘤的受体来治疗癌症。CAR-T疗法针对复发或难治性血液系统恶性肿瘤,尤其是在急性淋巴细胞白血病(acute lymphoblastic leukemia,ALL)的治疗中展现出令人瞩目的临床效果,但对实体瘤的治疗效果却不尽如人意。靶向肿瘤抗原的TCR-T疗法已在临床上证明可以有效治疗实体瘤,并取得了令人鼓舞的临床数据。但是,TCR-T疗法也面临一些挑战,例如靶向肿瘤抗原的选择、肿瘤特异性TCR的选择和优化、TCR-T的体内持久性和临床安全性等。综述TCR-T疗法的临床发展现状和其非临床研究动物模型的应用,并讨论了动物模型在克服当前限制性因素中的应用,以期待TCR-T疗法使更多肿瘤患者受益。
    Abstract: T cell receptor-engineered T cells (TCR-T) and chimeric antigen receptor T cells (CAR-T) therapies are two main types of adoptive cell therapy(ACT), which can treat cancer by giving natural T cells specific recognition of tumor receptors through gene modification technique. CAR-T therapy has achieved remarkable success in relapsed or refractory hematological malignancies, especially in the treatment of acute lymphoblastic leukemia (ALL), yet with less effect on solid tumors. TCR-T therapy has displayed some advantage over CAR-T therapy in treating solid tumors with inspiring clinical data. However, TCR-T therapy is faced with some challenges, including the selection of tumor-specific/associated antigens, selection and optimization of tumor-specific TCR, the persistence of TCR-T, and the safety of TCR-T therapy. This paper reviews the current development of TCR-T therapy and application of its preclinical animal models,and also discusses the progress made in the research on preclinical animal models employed to overcome the restrictive factors of TCR-T therapy, in the hope that TCR-T therapy will eventually benefit more cancer patients in the future.
  • [1]

    Mo Z,Du P,Wang G,et al.The multi-purpose tool of tumor immunotherapy:gene-engineered T cells[J].J Cancer,2017,8(9):1690-1703.

    [2]

    Locke F L,Neelapu S S,Bartlett N L,et al.Phase 1 results of ZUMA-1:a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma[J].Mol Ther,2017,25(1):285-295.

    [3]

    Maude S L,Barrett D,Teachey D T,et al.Managing cytokine release syndrome associated with novel T cell-engaging therapies[J].Cancer J,2014,20(2):119-122.

    [4]

    Porter D L,Hwang W T,Frey N V,et al.Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia[J].Sci Transl Med,2015,7(303):139-303.

    [5]

    Greenberg P D,Finch R J,Gavin M A,et al.Genetic modification of T cell clones for therapy of human viral and malignant diseases[J].Cancer J Sci Am,1998,4(Suppl 1):S100-S105.

    [6]

    Aebersold P,Hyatt C,Johnson S,et al.Lysis of autologous melanoma cells by tumor-infiltrating lymphocytes:association with clinical response[J].J Natl Cancer Inst,1991,83(13):932-937.

    [7]

    Fisher B,Packard B S,Read E J,et al.Tumor localization of adoptively transferred indium-111 labeled tumor infiltrating lymphocytes in patients with metastatic melanoma[J].J Clin Oncol,1989,7(2):250-261.

    [8]

    Aoki Y,Takakuwa K,Kodama S,et al.Use of adoptive transfer of tumor-infiltrating lymphocytes alone or in combination with cisplatincontaining chemotherapy in patients with epithelial ovarian cancer[J].Cancer Res,1991,51(7):1934-1939.

    [9]

    Rosenberg S A,Yang J C,Sherry R M,et al.Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy[J].Clin Cancer Res,2011,17(13):4550-4557.

    [10]

    Morgan R A,Dudley M E,Wunderlich J R,et al.Cancer regression in patients after transfer of genetically engineered lymphocytes[J].Science,2006,314(5796):126-129.

    [11]

    Johnson L A,Morgan R A,Dudley M E,et al.Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen[J].Blood,2009,114(3):535-546.

    [12]

    Parkhurst M R,Yang J C,Langan R C,et al.T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis[J].Mol Ther,2011,19(3):620-626.

    [13]

    Robbins P F,Morgan R A,Feldman S A,et al.Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1[J].JClin Oncol,2011,29(7):917-924.

    [14]

    Robbins P F,Kassim S H,Tran T L,et al.A pilot trial using lymphocytes genetically engineered with an NYESO-1-reactive T-cell receptor:long-term follow-up and correlates with response[J].Clin Cancer Res,2015,21(5):1019-1027.

    [15]

    Hwu P,Yang J C,Cowherd R,et al.In vivo antitumor activity of T cells redirected with chimeric antibody/T-cell receptor genes[J].Cancer Res,1995,55(15):3369-3373.

    [16]

    Barrett D M,Singh N,Liu X,et al.Relation of clinical culture method to T-cell memory status and efficacy in xenograft models of adoptive immunotherapy[J].Cytotherapy,2014,16(5):619-630.

    [17]

    Berger C,Sommermeyer D,Hudecek M,et al.Safety of targeting ROR1 in primates with chimeric antigen receptor-modified T cells[J].Cancer Immunol Res,2015,3(2):206-216.

    [18]

    Künkele A,Taraseviciute A,Finn L S,et al.Preclinical assessment of CD171-directed CAR T-cell adoptive therapy for childhood neuroblastoma:CE7 epitope target safety and product manufacturing feasibility[J].Clin Cancer Res,2017,23(2):466-477.

    [19]

    Siegler E L,Wang P.Preclinical models in chimeric antigen receptorengineered T-cell therapy[J].Hum Gene Ther,2018,29(5):534-546.

    [20]

    Hu Z,Xia J,Fan W,et al.Human melanoma immunotherapy using tumor antigen-specific T cells generated in humanized mice[J].Oncotarget,2016,7(6):6448-6459.

    [21]

    Leisegang M,Kammertoens T,Uckert W,et al.Targeting human melanoma neoantigens by T cell receptor gene therapy[J].J Clin Invest,2016,126(3):854-858.

    [22]

    Poncette L,Chen X,Lorenz F K,et al.Effective NY-ESO-1-specific MHC II-restricted T cell receptors from antigen-negative hosts enhance tumor regression[J].J Clin Invest,2019,129(1):324-335.

    [23]

    Hanada K I,Yu Z,Chappell G R,et al.An effective mouse model for adoptive cancer immunotherapy targeting neoantigens[J/OL].JCIInsight,2019,4(10):e124405[2021-05-31].https://pubmed.ncbi.nlm.nih.gov/31092734/.DOI: 10.1172/jci.insight.124405.

    [24]

    Bacac M,Fauti T,Sam J,et al.A novel carcinoembryonic antigen T-cell bispecific antibody (CEA TCB) for the treatment of solid tumors[J].Clin Cancer Res,2016,22(13):3286-3297.

    [25]

    Echchannaoui H,Petschenka J,Ferreira E A,et al.Potent tumorreactive p53-specific single-chain TCR without on-or off-target autoimmunity in vivo[J].Mol Ther,2019,27(1):261-271.

    [26]

    Wirtz T,Weber T,Kracker S,et al.Mouse model for acute EpsteinBarr virus infection[J].Proc Natl Acad Sci USA,2016,113(48):13821-13826.

    [27]

    Jin B Y,Campbell T E,Draper L M,et al.Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model[J/OL].JCI Insight,2018,3(8):e99488[2021-05-31].https://pubmed.ncbi.nlm.nih.gov/29669936/.DOI: 10.1172/jci.insight.99488.

    [28]

    Koh S,Shimasaki N,Suwanarusk R,et al.A practical approach to immunotherapy of hepatocellular carcinoma using T cells redirected against hepatitis B virus[J/OL].Mol Ther Nucleic Acids,2013,2(8):e114[2021-05-31].https://pubmed.ncbi.nlm.nih.gov/23941866/.DOI: 10.1038/mtna.2013.43.

    [29]

    Bos R,van Duikeren S,Morreau H,et al.Balancing between antitumor efficacy and autoimmune pathology in T-cell-mediated targeting of carcinoembryonic antigen[J].Cancer Res,2008,68(20):8446-8455.

    [30]

    Palmer D C,Chan C C,Gattinoni L,et al.Effective tumor treatment targeting a melanoma/melanocyte-associated antigen triggers severe ocular autoimmunity[J].Proc Natl Acad Sci USA,2008,105(23):8061-8066.

    [31]

    Parkhurst M R,Yang J C,Langan R C,et al.T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis[J].Mol Ther,2011,19(3):620-626.

    [32]

    Kageyama S,Ikeda H,Miyahara Y,et al.Adoptive transfer of MAGE-A4 T-cell receptor gene-transduced lymphocytes in patients with recurrent esophageal cancer[J].Clin Cancer Res,2015,21(10):2268-2277.

    [33]

    Nagarsheth N B,Norberg S M,Sinkoe A L,et al.TCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers[J].Nat Med,2021,27(3):419-425.

    [34]

    Li D,Li X,Zhou W L,et al.Genetically engineered T cells for cancer immunotherapy[J/OL].Signal Transduct Tar,2019,4:35[2021-05-31].https://www.nature.com/articles/s41392-019-0070-9.DOI: 10.1038/s41392-019-0070-9.

    [35]

    Simpson A J,Caballero O L,Jungbluth A,et al.Cancer/testis antigens,gametogenesis and cancer[J].Nat Rev Cancer,2005,5(8):615-625.

    [36]

    Schumacher T N,Scheper W,Kvistborg P,et al.Cancer neoantigens[J/OL].Annu Rev Immunol,2019,37:173-200[2021-05-31].https://pubmed.ncbi.nlm.nih.gov/30550719/.DOI: 10.1146/annurev-immunol-042617-053402.

    [37]

    Bassani-Sternberg M,Bräunlein E,Klar R,et al.Direct identification of clinically relevant neoepitopes presented on native humanmelanoma tissue by mass spectrometry[J/OL].Nat Commun,2016,7:13404[2021-05-31].https://www.nature.com/articles/ncomms13404.DOI: 10.1038/ncomms13404.

    [38]

    Cohen C J,Gartner J J,Horovitz-Fried M,et al.Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes[J].J Clin Invest,2015,125(10):3981-3991.

    [39]

    Kalaora S,Barnea E,Merhavi-Shoham E,et al.Use of HLApeptidomics and whole exome sequencing to identify human immunogenic neo-antigens[J].Oncotarget,2016,7(5):5110-5117.

    [40]

    Alpízar A,Marino F,Ramos-Fernández A,et al.A molecular basis for the presentation of phosphorylated peptides by HLA-B antigens[J].Mol Cell Proteomics,2017,16(2):181-193.

    [41]

    Marino F,Mommen G P,Jeko A,et al.Arginine (di)methylated human leukocyte antigen class I peptides are favorably presented by HLA-B*07[J].J Proteome Res,2016,16(1):34-44.

    [42]

    Robins H S,Campregher P V,Srivastava S K,et al.Comprehensive assessment of T-cell receptor b-chain diversity in alphabeta T cells[J].Blood,2009,114(19):4099-4107.

    [43]

    Linnemann C,Heemskerk B,Kvistborg P,et al.High-throughput identification of antigen-specific TCRs by TCR gene capture[J].Nat Med,2013,19(11):1534-1541.

    [44]

    Ruggiero E,Nicolay J P,Fronza R,et al.High-resolution analysis of the human T-cell receptor repertoire[J/OL].Nat Commun,2015,6:8081[2021-05-31].https://www.nature.com/articles/ncomms9081.DOI: 10.1038/ncomms9081.

    [45]

    Bentzen A K,Marquard A M,Lyngaa R,et al.Large-scale detection of antigen-specific T cells using peptide-MHCI multimers labeled with DNA barcodes[J].Nat Biotechnol,2016,34(10):1037-1045.

    [46]

    Zeh H J 3rd,Perry-Lalley D,Dudley M E,et al.High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy[J].J Immunol,1999,162(2):989-994.

    [47]

    Derby M,Alexander-Miller M,Tse R,et al.High-avidity CTL exploit two complementary mechanisms to provide better protection against viral infection than low-avidity CTL[J].J Immunol,2001,166(3):1690-1697.

    [48]

    Labrecque N,Whitfield L S,Obst R,et al.How much TCR does a Tcell need?[J].Immunity,2001,15(1):71-82.

    [49]

    Miller A M,Bahmanof M,Zehn D,et al.Leveraging TCR affinity in adoptive immunotherapy against shared tumor/self-antigens[J].Cancer Immun Res,2019,7(1):40-49.

    [50]

    Presotto D,Erdes E,Duong M N,et al.Fine-tuning of optimal TCRsignaling in tumor-redirected CD8 T cells by distinct TCR affinitymediated mechanisms[J/OL].Front Immunol,2017,8:1564[2021-05-31].https://www.frontiersin.org/articles/ 10.3389/fimmu.2017.01564/full.DOI: 10.3389/fimmu.2017.01564.

    [51]

    Zhong S,Malecek K,Johnson L A,et al.T-cell receptor affinity and avidity defines antitumor response and autoimmunity in T-cell immunotherapy[J].Proc Natl Acad Sci,2013,110(17):6973-6978.

    [52]

    Martinez R J,Evavold B D.Lower affinity T cells are critical components and active participants of the immune response[J/OL].Front Immunol,2015,6:468[2021-05-31].https://www.frontiersin.org/articles/ 10.3389/fimmu.2015.00468/full.DOI: 10.3389/fimmu.2015.00468.

    [53]

    Zehn D,Lee S Y,Bevan M J.Complete but curtailed T-cell response to very low-affinity antigen[J].Nature,2009,458(7235):211-214.

    [54]

    Garrido F,Aptsiauri N,Doorduijn E M,et al.The urgent need to recover MHC class I in cancers for effective immunotherapy[J/OL].Curr Opin Immunol,2016,39:44-51[2021-05-31].https://pubmed.ncbi.nlm.nih.gov/26796069/.DOI: 10.1016/j.coi.2015.12.007.

    [55]

    Garrido F,Cabrera T,Aptsiauri N."Hard"and"soft"lesions underlying the HLA class I alterations in cancer cells:implications for immunotherapy[J].Int J Cancer,2010,127(2):249-256.

    [56]

    Lim W A,June C H.The principles of engineering immune cells to treat cancer[J].Cell,2017,168(4):724-740.

    [57]

    Jameson S C,Masopust D.Understanding subset diversity in T cell memory[J].Immunity,2018,48(2):214-226.

    [58]

    Gattinoni L,Klebanoff C A,Restifo N P.Paths to stemness:building the ultimate antitumour T cell[J].Nat Rev Cancer,2012,12(10):671-684.

    [59]

    Gattinoni L,Lugli E,Ji Y,et al.A human memory T cell subset with stem cell-like properties[J].Nat Med,2011,17(10):1290-1297.

    [60]

    Xu Y,Zhang M,Ramos C A,et al.Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15[J].Blood,2014,123(24):3750-3759.

    [61]

    Corgnac S,Boutet M,Kfoury M,et al.The emerging role of CD8+ tissue resident nemory T (TRM) cells in antitumor immunity:a unique functional contribution of the CD103 integrin[J/OL].Front Immunol,2018,9:1904[2021-05-31].https://www.frontiersin.org/articles/ 10.3389/fimmu.2018.01904/full.DOI: 10.3389/fimmu.2018.01904.

    [62]

    Chapuis A G,Egan D N,Bar M,et al.T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse posttransplant[J].Nat Med,2019,25(7):1064-1072.

    [63]

    Rapoport A P,Stadtmauer E A,Binder-Scholl G K,et al.NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma[J].Nat Med,2015,21(8):914-921.

    [64]

    Morgan R A,Chinnasamy N,Abate-Daga D,et al.Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy[J].J Immunother,2013,36(2):133-151.

    [65]

    Rongvaux A,Willinger T,Martinek J,et al.Development and function of human innate immune cells in a humanized mouse model[J].Nat Biotechnol,2014,32(4):364-372.

    [66]

    Pillai S P S,Uthamanthil R K.Chapter 1-PDX Models:history and development[M/OL].New York:Academic Press,2017:1-12[2021-05-31].https://doi.org/10.1016/B978-0-12-804010-2.00001-1.

    [67]

    Stauss H J,Morris E C.Immunotherapy with genemodified T cells:limiting side effects provides new challenges[J].Gene Ther,2013,20(11):1029-1032.

    [68]

    Bendle G M,Linnemann C,Hooijkaas A I,et al.Lethal graft-versushost disease in mouse models of T cell receptor gene therapy[J].Nat Med,2010,16(5):565-570.

    [69]

    Greco R,Oliveira G,Stanghellini M T,et al.Improving the safety of cell therapy with the TK-suicide gene[J/OL].Front Pharmacol,2015,6:95[2021-05-31].https://www.frontiersin.org/articles/ 10.3389/fphar.2015.00095/full.DOI: 10.3389/fphar.2015.00095.

    [70]

    Lupo-Stanghellini M T,Provasi E,Bondanza A,et al.Clinical impact of suicide gene therapy in allogeneic hematopoietic stem cell transplantation[J].Hum Gene Ther,2010,21(3):241-250.

    [71]

    Straathof K C,PulèM A,Yotnda P,et al.An inducible caspase 9safety switch for T-cell therapy[J].Blood,2005,105(11):4247-4254.

    [72]

    Liu L,Sommermeyer D,Cabanov A,et al.Inclusion of Strep-tag II in design of antigen receptors for T-cell immunotherapy[J].Nat Biotechnol,2016,34(4):430-434.

    [73]

    Docta R Y,Ferronha T,Sanderson J P,et al.Tuning T-cell receptor affinity to optimize clinical risk-benefit when targeting alpha-fetoproteinpositive liver cancer[J].Hepatology,2019,69(5):2061-2075.

    [74]

    Bunse M,Bendle G M,Linnemann C,et al.RNAi mediated TCRknockdown prevents autoimmunity in mice caused by mixed TCRdimers following TCR gene transfer[J].Mol Ther,2014,22(11):1983-1991.

    [75]

    Osborn M J,Webber B R,Knipping F,et al.Evaluation of TCRgene editing achieved by TALENs,CRISPR/Cas9,and mega TALnucleases[J].Mol Ther,2016.24(3):570-581.

  • 期刊类型引用(2)

    1. 薛飞,吴明海,王锐,王志颐. 鼻咽癌生物靶向及免疫治疗研究进展. 医学研究生学报. 2022(09): 982-986 . 百度学术
    2. 王赛,刘晓燕. 白细胞介素-12对肿瘤切除术后肿瘤复发抑制作用的实验研究. 精准医学杂志. 2022(05): 412-417 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  476
  • HTML全文浏览量:  30
  • PDF下载量:  57
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-05-30

目录

    /

    返回文章
    返回