-
摘要: 植物细胞、细菌细胞和哺乳动物细胞均可生成和分泌细胞外囊泡,囊泡内含有蛋白质、核酸、脂质和小分子代谢物。在发现早期,细胞外囊泡只被认为是细胞处置细胞废弃物的一种方式,后发现这些囊泡可在不同细胞之间传递活性物质并改变囊泡受体细胞表型。越来越多的研究证实囊泡是细胞间短程和长程通讯的一种新机制,是细胞间通讯的新范式。细胞外囊泡具有广泛的生理病理作用,既可直接用作药物也可作为药物递送载体,还可作为药物靶标和生物标志物。综述植物、细菌和哺乳动物等不同细胞来源的细胞外囊泡在肿瘤靶向治疗中的作用和应用及工程化策略。Abstract: Plant cells, bacterial cells, and mammalian cells can produce and secret extracellular vesicles (EVs) encapsulated with proteins, nucleic acids, lipids, and small molecules. At the very beginning of research on EV, EVs were thought to function solely as a way to dispose cellular waste. Later on, EVs were found to be able to carry and transfer bioactive substances between cells and change the phenotype of the recipient cells. More and more studies have confirmed that EVs are novel mediators for short- and long-range intercellular communication and new pattern of intercellular communication. EVs have broad physiological and pathological effects and can serve as diagnostic biomarkers, drugs, drug targets, and drug carriers. In this paper, we review the effect, application, and engineering strategies of EVs from different sources in targeted cancer therapy.
-
Keywords:
- extracellular vesicle /
- cancer /
- targeted therapy
-
-
[1] van Niel G, Carter D R F, Clayton A, et al. Challenges and directions in studying cell-cell communication by extracellular vesicles[J].Nat Rev Mol Cell Biol, 2022.DOI: 10.1038/s41580-022-00460-3.
[2] Raposo G, Stahl P D. Extracellular vesicles:a new communication paradigm?[J].Nat Rev Mol Cell Biol, 2019, 20(9):509-510.
[3] Cheng L, Hill A F. Therapeutically harnessing extracellular vesicles[J].Nat Rev Drug Discov, 2022.DOI: 10.1038/s41573-022-00410-w.
[4] Herrmann I K, Wood M J A, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform[J].Nat Nanotechnol, 2021, 16(7):748-759.
[5] Hoshino A, Kim H S, Bojmar L, et al. Extracellular vesicle and particle biomarkers define multiple human cancers[J].Cell, 2020, 182(4):1044-1061.e1018.
[6] Lebleu V S, Kalluri R. Exosomes as a multicomponent biomarker platform in cancer[J].Trends Cancer, 2020, 6(9):767-774.
[7] Pegtel D M, Gould S J. Exosomes[J].Annu Rev Biochem, 2019, 88:487-514.DOI: 10.1146/annurev-biochem-013118-111902.
[8] van Deun J, Mestdagh P, Agostinis P, et al. EV-TRACK:transparent reporting and centralizing knowledge in extracellular vesicle research[J].Nat Methods, 2017, 14(3):228-232.
[9] Nieuwland R, Falcón-Pérez J M, Théry C, et al. Rigor and standardization of extracellular vesicle research:paving the road towards robustness[J].J Extracell Vesicles, 2020, 10(2):e12037.DOI: 10.11002/jev2.12037.
[10] Xu R, Rai A, Chen M, et al. Extracellular vesicles in cancer-implications for future improvements in cancer care[J].Nat Rev Clin Oncol, 2018, 15(10):617-638.
[11] Shurtleff M J, Temoche-Diaz M, Schekman R. Extracellular vesicles and cancer:caveat lector[J].Ann Rev Cancer Biol, 2018, 2(1):395-411.
[12] Cong M, Tan S, Li S, et al. Technology insight:plant-derived vesicles-how far from the clinical biotherapeutics and therapeutic drug carriers?[J].Adv Drug Deliv Rev, 2022, 182:114108.DOI:10.1016/j.addr. 2021.114108.
[13] Dad H A, Gu T W, Zhu A Q, et al. Plant exosome-like nanovesicles:emerging therapeutics and drug delivery nanoplatforms[J].Mol Ther, 2021, 29(1):13-31.
[14] van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J].Nat Rev Mol Cell Biol, 2018, 19(4):213-228.
[15] Chargaff E, West R. The biological significance of the thromboplastic protein of blood[J].J Biol Chem, 1946, 166(1):189-197.
[16] Wolf P. The nature and significance of platelet products in human plasma[J].Br J Haematol, 1967, 13(3):269-288.
[17] Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-tocell communication[J].Nat Cell Biol, 2019, 21(1):9-17.
[18] Trams E G, Lauter C J, Salem N Jr, et al. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles[J].Biochim Biophys Acta, 1981, 645(1):63-70.
[19] Atkin-Smith G K, Poon I K H. Disassembly of the dying:mechanisms and functions[J].Trends Cell Biol, 2017, 27(2):151-162.
[20] Shen B, Wu N, Yang J M, et al. Protein targeting to exosomes/microvesicles by plasma membrane anchors[J].J Biol Chem, 2011, 286(16):14383-14395.
[21] Théry C, Witwer K W, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018(MISEV2018):a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines[J].J Extracell Vesicles, 2018, 7(1):1535750.DOI: 10.1080/20013078.2018.1535750.
[22] Couch Y, Buzàs E I, Vizio D D, et al. A brief history of nearly EV-erything-the rise and rise of extracellular vesicles[J].J Extracell Vesicles, 2021, 10(14):e12144.DOI: 10.1002/jev2.12144.
[23] Théry C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids[J].Curr Protoc Cell Biol, 2006, Chapter 3:Unit 3.22. DOI: 10.1002/0471143030.cb0322s30.
[24] Jong A Y, Wu C H, Li J, et al. Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells[J].J Extracell Vesicles, 2017, 6(1):1294368.DOI: 10.1080/20013078.2017.1294368.
[25] Busatto S, Vilanilam G, Ticer T, et al. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid[J].Cells, 2018, 7(12):273.DOI: 10.3390/cells7120273.
[26] Sitar S, Kejžar A, Pahovnik D, et al. Size characterization and quantification of exosomes by asymmetrical-flow field-flow fractionation[J].Anal Chem, 2015, 87(18):9225-9233.
[27] Böing A N, van der Pol E, Grootemaat A E, et al. Single-step isolation of extracellular vesicles by size-exclusion chromatography[J].J Extracell Vesicles, 2014, 3(1):1-11.
[28] Mathivanan S, Lim J W E, Tauro B J, et al. Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature[J].Mol Cell Proteomics, 2010, 9(2):197-208.
[29] Takov K, Yellon D M, Davidson S M. Comparison of small extracellular vesicles isolated from plasma by ultracentrifugation or size-exclusion chromatography:yield, purity and functional potential[J].J Extracell Vesicles, 2019, 8(1):1560809.DOI: 10.1080/20013078.2018.1560809.
[30] Roux Q, van Deun J, Dedeyne S, et al. The EV-TRACK summary add-on:integration of experimental information in databases to ensure comprehensive interpretation of biological knowledge on extracellular vesicles[J].J Extracell Vesicles, 2020, 9(1):1699367.DOI: 10.1080/20013078.2019.1699367.
[31] Verweij F J, Balaj L, Boulanger C M, et al. The power of imaging to understand extracellular vesicle biology in vivo[J].Nat Methods, 2021, 18(9):1013-1026.
[32] Tian T, Zhu Y L, Zhou Y Y, et al. Exosome uptake through clathrinmediated endocytosis and macropinocytosis and mediating miR-21 delivery[J].J Biol Chem, 2014, 289(32):22258-22267.
[33] Valapala M, Vishwanatha J K. Lipid raft endocytosis and exosomal transport facilitate extracellular trafficking of annexin A2[J].J Biol Chem, 2011, 286(35):30911-30925.
[34] Feng D, Zhao W L, Ye Y Y, et al. Cellular internalization of exosomes occurs through phagocytosis[J].Traffic, 2010, 11(5):675-687.
[35] Escrevente C, Keller S, Altevogt P, et al. Interaction and uptake of exosomes by ovarian cancer cells[J].BMC Cancer, 2011, 11:108.DOI: 10.1186/1471-2407-11-108.
[36] del Conde I, Shrimpton C N, Thiagarajan P, et al. Tissue-factorbearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation[J].Blood, 2005, 106(5):1604-1611.
[37] Rennick J J, Johnston A P R, Parton R G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics[J].Nat Nanotechnol, 2021, 16(3):266-276.
[38] Christianson H C, Svensson K J, van Kuppevelt T H, et al. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity[J].Proc Natl Acad Sci USA, 2013, 110(43):17380-17385.
[39] Saunderson S C, Dunn A C, Crocker P R, et al. CD169 mediates the capture of exosomes in spleen and lymph node[J].Blood, 2014, 123(2):208-216.
[40] Joshi B S, de Beer M A, Giepmans B N G, et al. Endocytosis of extracellular vesicles and release of their cargo from endosomes[J].ACS Nano, 2020, 14(4):4444-4455.
[41] Parolini I, Federici C, Raggi C, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells[J].J Biol Chem, 2009, 284(49):34211-34222.
[42] Bonsergent E, Grisard E, Buchrieser J, et al. Quantitative characterization of extracellular vesicle uptake and content delivery within mammalian cells[J].Nat Commun, 2021, 12(1):1864.DOI: 10.1038/s41467-021-22126-y.
[43] Santos M F, Rappa G, Karbanová J, et al. VAMP-associated protein-A and oxysterol-binding protein-related protein 3 promote the entry of late endosomes into the nucleoplasmic reticulum[J].J Biol Chem, 2018, 293(36):13834-13848.
[44] Santos M F, Rappa G, Karbanová J, et al. Itraconazole inhibits nuclear delivery of extracellular vesicle cargo by disrupting the entry of late endosomes into the nucleoplasmic reticulum[J].J Extracell Vesicles, 2021, 10(10):e12132.DOI: 10.1002/jev2.12132.
[45] Lai C P, Mardini O, Ericsson M, et al. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter[J].ACS Nano, 2014, 8(1):483-494.
[46] Smyth T, Kullberg M, Malik N, et al. Biodistribution and delivery efficiency of unmodified tumor-derived exosomes[J].J Control Release, 2015, 199:145-155.DOI: 10.1016/j.jconrel.2014.12.013.
[47] Verweij F J, Revenu C, Arras G, et al. Live tracking of inter-organ communication by endogenous exosomes in vivo[J].Dev Cell, 2019, 48(4):573-589.e574.
[48] Hyenne V, Ghoroghi S, Collot M, et al. Studying the fate of tumor extracellular vesicles at high spatiotemporal resolution using the zebrafish embryo[J].Dev Cell, 2019, 48(4):554-572.e557.
[49] Salunkhe S, Dheeraj, Basak M, et al. Surface functionalization of exosomes for target-specific delivery and in vivo imaging& tracking:strategies and significance[J].J Control Release, 2020, 326:599-614.DOI: 10.1016/j.jconrel.2020.07.042.
[50] Parada N, Romero-Trujillo A, Georges N, et al. Camouflage strategies for therapeutic exosomes evasion from phagocytosis[J].J Adv Res, 2021, 31:61-74.DOI: 10.1016/j.jare.2021.01.001.
[51] Koh E, Lee E J, Nam G H, et al. Exosome-SIRPα, a CD47 blockade increases cancer cell phagocytosis[J].Biomaterials, 2017, 121:121-129.DOI: 10.1016/j.biomaterials.2017.01.004.
[52] Hanahan D. Hallmarks of cancer:new dimensions[J].Cancer Discov, 2022, 12(1):31-46.
[53] Hanahan D, Weinberg R A. Hallmarks of cancer:the next generation[J].Cell, 2011, 144(5):646-674.
[54] Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J].Nat Cell Biol, 2007, 9(6):654-659.
[55] Pegtel D M, Cosmopoulos K, Thorley-Lawson D A, et al. Functional delivery of viral miRNAs via exosomes[J].Proc Natl Acad Sci USA, 2010, 107(14):6328-6333.
[56] Zhang Y, Liu D, Chen X, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration[J].Mol Cell, 2010, 39(1):133-144.
[57] Al-Nedawi K, Meehan B, Micallef J, et al. Intercellular transfer of the oncogenic receptor EGFRvⅢ by microvesicles derived from tumour cells[J].Nat Cell Biol, 2008, 10(5):619-624.
[58] Skog J, Würdinger T, van Rijn S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers[J].Nat Cell Biol, 2008, 10(12):1470-1476.
[59] Gross J C, Chaudhary V, Bartscherer K, et al. Active Wnt proteins are secreted on exosomes[J].Nat Cell Biol, 2012, 14(10):1036-1045.
[60] Zomer A, Maynard C, Verweij F J, et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior[J].Cell, 2015, 161(5):1046-1057.
[61] Melo S A, Luecke L B, Kahlert C, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer[J].Nature, 2015, 523(7559):177-182.
[62] Möller A, Lobb R J. The evolving translational potential of small extracellular vesicles in cancer[J].Nat Rev Cancer, 2020, 20(12):697-709.
[63] Poggio M, Hu T, Pai C C, et al. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory[J].Cell, 2019, 177(2):414-427.e413.
[64] Chen G, Huang A C, Zhang W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response[J].Nature, 2018, 560(7718):382-386.
[65] Peinado H, Alečković M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET[J].Nat Med, 2012, 18(6):883-891.
[66] García-Silva S, Benito-Martín A, Nogués L, et al. Melanoma-derived small extracellular vesicles induce lymphangiogenesis and metastasis through an NGFR-dependent mechanism[J].Nat Cancer, 2021, 2(12):1387-1405.
[67] Zhou W, Fong M Y, Min Y, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis[J].Cancer cell, 2014, 25(4):501-515.
[68] Rodrigues G, Hoshino A, Kenific C M, et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis[J].Nat Cell Biol, 2019, 21(11):1403-1412.
[69] Costa-Silva B, Aiello N M, Ocean A J, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver[J].Nat Cell Biol, 2015, 17(6):816-826.
[70] Keklikoglou I, Cianciaruso C, Güç E, et al. Chemotherapy elicits prometastatic extracellular vesicles in breast cancer models[J].Nat Cell Biol, 2019, 21(2):190-202.
[71] Hoshino A, Costa-Silva B, Shen T L, et al. Tumour exosome integrins determine organotropic metastasis[J].Nature, 2015, 527(7578):329-335.
[72] Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy:mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs[J].Cancer Res, 1986, 46(12 Pt 1):6387-6392.
[73] Galindo-Hernandez O, Villegas-Comonfort S, Candanedo F, et al.Elevated concentration of microvesicles isolated from peripheral blood in breast cancer patients[J].Arch Med Res, 2013, 44(3):208-214.
[74] Baran J, Baj-Krzyworzeka M, Weglarczyk K, et al. Circulating tumour-derived microvesicles in plasma of gastric cancer patients[J].Cancer Immunol Immunother, 2010, 59(6):841-850.
[75] Logozzi M, de Milito A, Lugini L, et al. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients[J].PLoS One, 2009, 4(4):e5219.DOI: 10.1371/journal.pone.0005219.
[76] Kosaka N, Yoshioka Y, Fujita Y, et al. Versatile roles of extracellular vesicles in cancer[J].J Clin Invest, 2016, 126(4):1163-1172.
[77] Raposo G, Nijman H W, Stoorvogel W, et al. B lymphocytes secrete antigen-presenting vesicles[J].J Exp Med, 1996, 183(3):1161-1172.
[78] Zitvogel L, Regnault A, Lozier A, et al. Eradication of established murine tumors using a novel cell-free vaccine:dendritic cell-derived exosomes[J].Nat Med, 1998, 4(5):594-600.
[79] Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy[J].Biomaterials, 2014, 35(7):2383-2390.
[80] Anguille S, Smits E L, Lion E, et al. Clinical use of dendritic cells for cancer therapy[J].Lancet Oncol, 2014, 15(7):e257-e267.DOI: 10.1016/S1470-2045(13)70585-0.
[81] Zhu L, Kalimuthu S, Gangadaran P, et al. Exosomes derived from natural killer cells exert therapeutic effect in melanoma[J].Theranostics, 2017, 7(10):2732-2745.
[82] Zhang J, Ji C, Zhang H, et al. Engineered neutrophil-derived exosome-like vesicles for targeted cancer therapy[J].Sci Adv, 2022, 8(2):eabj8207.DOI: 10.1126/sciadv.abj8207.
[83] Kamerkar S, Lebleu V S, Sugimoto H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer[J].Nature, 2017, 546(7659):498-503.
[84] Mendt M, Kamerkar S, Sugimoto H, et al. Generation and testing of clinical-grade exosomes for pancreatic cancer[J].JCI Insight, 2018, 3(8):e99263.DOI: 10.1172/jci.insight.99263.
[85] Ricklefs F L, Alayo Q, Krenzlin H, et al. Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles[J].Sci Adv, 2018, 4(3):eaar2766.DOI: 10.1126/sciadv.aar2766.
[86] Kim J W, Wieckowski E, Taylor D D, et al. Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes[J].Clin Cancer Res, 2005, 11(3):1010-1020.
[87] Albanese J, Meterissian S, Kontogiannea M, et al. Biologically active fas antigen and its cognate ligand are expressed on plasma membranederived extracellular vesicles[J].Blood, 1998, 91(10):3862-3874.
[88] Huber V, Fais S, Iero M, et al. Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles:role in immune escape[J].Gastroenterology, 2005, 128(7):1796-1804.
[89] Valenti R, Huber V, Filipazzi P, et al. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-β-mediated suppressive activity on T lymphocytes[J].Cancer Res, 2006, 66(18):9290-9298.
[90] Wolfers J, Lozier A, Raposo G, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming[J].Nat Med, 2001, 7(3):297-303.
[91] Wang J, Cao Z, Wang P, et al. Apoptotic extracellular vesicles ameliorate multiple myeloma by restoring fas-mediated apoptosis[J].ACS Nano, 2021, 15(9):14360-14372.
[92] Yuan Z, Kolluri K K, Gowers K H C, et al. TRAIL delivery by MSC-derived extracellular vesicles is an effective anticancer therapy[J].J Extracell Vesicles, 2017, 6(1):1265291.DOI: 10.1080/20013078.2017.1265291.
[93] Rivoltini L, Chiodoni C, Squarcina P, et al. TNF-related apoptosisinducing ligand (TRAIL)-armed exosomes deliver proapoptotic signals to tumor site[J].Clin Cancer Res, 2016, 22(14):3499-3512.
[94] Dai S, Zhou X, Wang B, et al. Enhanced induction of dendritic cell maturation and HLA-A*0201-restricted CEA-specific CD8+ CTL response by exosomes derived from IL-18 gene-modified CEA-positive tumor cells[J].J Mol Med, 2006, 84(12):1067-1076.
[95] Yang Y, Xiu F, Cai Z, et al. Increased induction of antitumor response by exosomes derived from interleukin-2 gene-modified tumor cells[J].J Cancer Res Clin Oncol, 2007, 133(6):389-399.
[96] Tang K, Zhang Y, Zhang H, et al. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles[J].Nat Commun, 2012, 3(1):1282.DOI: 10.1038/ncomms2282.
[97] Guo M, Wu F, Hu G, et al. Autologous tumor cell-derived microparticle-based targeted chemotherapy in lung cancer patients with malignant pleural effusion[J].Sci Transl Med, 2019, 11(474):eaat5690.DOI: 10.1126/scitranslmed.aat5690.
[98] Ma J, Zhang Y, Tang K, et al. Reversing drug resistance of soft tumor-repopulating cells by tumor cell-derived chemotherapeutic microparticles[J].Cell Res, 2016, 26(6):713-727.
[99] Bishop D G, Work E. An extracellular glycolipid produced by Escherichia coli grown under lysine-limiting conditions[J].Biochem J, 1965, 96(2):567-576.
[100] Chatterjee S N, Das J. Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae[J].J Gen Appl Microbiol, 1967, 49(1):1-11.
[101] Lee E Y, Choi D Y, Kim D K, et al. Gram-positive bacteria produce membrane vesicles:proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles[J].Proteomics, 2009, 9(24):5425-5436.
[102] Devoe I W, Gilchrist J E. Pili on meningococci from primary cultures of nasopharyngeal carriers and cerebrospinal fluid of patients with acute disease[J].J Exp Med, 1975, 141(2):297-305.
[103] Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles[J].Nat Rev Microbiol, 2019, 17(1):13-24.
[104] McMillan H M, Kuehn M J. The extracellular vesicle generation paradox:a bacterial point of view[J].EMBO J, 2021, 40(21):e108174.DOI:10.15252/embj.2021108174.
[105] Hendrix A, de Wever O. Systemically circulating bacterial extracellular vesicles:origin, fate, and function[J].Trends Microbiol, 2022, 30(3):213-216.
[106] Elhenawy W, Bording-Jorgensen M, Valguarnera E, et al. LPS remodeling triggers formation of outer membrane vesicles in salmonella[J].mBio, 2016, 7(4):e00940-16.DOI:10.1128/mBio.00940-16.
[107] Dehinwal R, Cooley D, Rakov A V, et al. Increased production of outer membrane vesicles by salmonella interferes with complementmediated innate immune attack[J].mBio, 2021, 12(3):e0086921.DOI:10.1128/mBio.00869-21.
[108] Ojima Y, Sawabe T, Konami K, et al. Construction of hypervesiculation Escherichia coli strains and application for secretory protein production[J].Biotechnol Bioeng, 2020, 117(3):701-709.
[109] Mashburn-Warren L M, Whiteley M. Special delivery:vesicle trafficking in prokaryotes[J].Mol Microbiol, 2006, 61(4):839-846.
[110] Manabe T, Kato M, Ueno T, et al. Flagella proteins contribute to the production of outer membrane vesicles from Escherichia coli W3110[J].Biochem Biophys Res Commun, 2013, 441(1):151-156.
[111] Kulp A, Kuehn M J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles[J].Annu Rev Microbiol, 2010, 64:163-184.DOI:10.1146/annurev.micro.091208.073413.
[112] Tulkens J, de Wever O, Hendrix A. Analyzing bacterial extracellular vesicles in human body fluids by orthogonal biophysical separation and biochemical characterization[J].Nat Protoc, 2020, 15(1):40-67.
[113] Grochowska M, Perlejewski K, Laskus T, et al. The role of gut microbiota in gastrointestinal tract cancers[J].Arch Immunol Ther Exp (Warsz), 2022, 70(1):7.DOI:10.1007/s00005-021-00641-6.
[114] Chronopoulos A, Kalluri R. Emerging role of bacterial extracellular vesicles in cancer[J].Oncogene, 2020, 39(46):6951-6960.
[115] Sartorio M G, Pardue E J, Feldman M F, et al. Bacterial outer membrane vesicles:from discovery to applications[J].Annu Rev Microbiol, 2021, 75(1):609-630.
[116] Kim O Y, Park H T, Dinh N T H, et al. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response[J].Nat Commun, 2017, 8(1):626.DOI:10.1038/s41467-017-00729-8.
[117] Park K S, Svennerholm K, Crescitelli R, et al. Synthetic bacterial vesicles combined with tumour extracellular vesicles as cancer immunotherapy[J].J Extracell Vesicles, 2021, 10(9):e12120.DOI:10.1002/jev2.12120.
[118] Qing S, Lyu C, Zhu L, et al. Biomineralized bacterial outer membrane vesicles potentiate safe and efficient tumor microenvironment reprogramming for anticancer therapy[J].Adv Mater, 2020, 32(47):e2002085.DOI:10.1002/adma.202002085.
[119] Shi Y, Meng L, Zhang C, et al. Extracellular vesicles of lacticaseibacillus paracasei PC-H1 induce colorectal cancer cells apoptosis via PDK1/AKT/Bcl-2 signaling pathway[J].Microbiol Res, 2021, 255:126921.DOI:10.1016/j.micres.2021.126921.
[120] An Q, van Bel A J, Hückelhoven R. Do plant cells secrete exosomes derived from multivesicular bodies?[J].Plant Signal Behav, 2007, 2(1):4-7.
[121] Cui Y, Gao J, He Y, et al. Plant extracellular vesicles[J].Protoplasma, 2020, 257(1):3-12.
[122] Pinedo M, de la Canal L, de Marcos Lousa C. A call for rigor and standardization in plant extracellular vesicle research[J].J Extracell Vesicles, 2021, 10(6):e12048.DOI:10.1002/jev2.12048.
[123] Rutter B D, Innes R W. Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins[J].Plant Physiol, 2017, 173(1):728-741.
[124] Zhang J, Qiu Y, Xu K. Characterization of GFP-AtPEN1 as a marker protein for extracellular vesicles isolated from Nicotiana benthamiana leaves[J].Plant Signal Behav, 2020, 15(9):1791519.DOI:10.1080/15592324.2020.1791519.
[125] Regente M, Pinedo M, San Clemente H, et al. Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth[J].J Exp Bot, 2017, 68(20):5485-5495.
[126] Urzì O, Raimondo S, Alessandro R. Extracellular vesicles from plants:current knowledge and open questions[J].Int J Mol Sci, 2021, 22(10):5366.DOI:10.3390/ijms22105366.
[127] He B, Hamby R, Jin H. Plant extracellular vesicles:trojan horses of cross-kingdom warfare[J].FASEB Bioadv, 2021, 3(9):657-664.
[128] Cao M, Yan H, Han X, et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth[J].J Immunother Cancer, 2019, 7(1):326.DOI:10.1186/s40425-019-0817-4.
[129] Han X, Wei Q, Lv Y, et al. Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment[J].Mol Ther, 2022, 30(1):327-340.
[130] Zhang L, He F, Gao L, et al. Engineering exosome-like nanovesicles derived from asparagus cochinchinensis can inhibit the proliferation of hepatocellular carcinoma cells with better safety profile[J].Int J Nanomedicine, 2021, 16:1575-1586.DOI:10.2147/ijn.S293067.
[131] Kim K, Yoo H J, Jung J H, et al. Cytotoxic effects of plant sap-derived extracellular vesicles on various tumor cell types[J].J Funct Biomater, 2020, 11(2):22.DOI:10.3390/jfb11020022.
[132] Stanly C, Alfieri M, Ambrosone A, et al. Grapefruit-derived micro and nanovesicles show distinct metabolome profiles and anticancer activities in the A375 human melanoma cell line[J].Cells, 2020, 9(12):2722.DOI:10.3390/cells9122722.
[133] Raimondo S, Naselli F, Fontana S, et al. Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death[J].Oncotarget, 2015, 6(23):19514-19527.
[134] Raimondo S, Saieva L, Cristaldi M, et al. Label-free quantitative proteomic profiling of colon cancer cells identifies acetyl-CoA carboxylase alpha as antitumor target of Citrus limon-derived nanovesicles[J].J Proteomics, 2018, 173:1-11.DOI:10.1016/j.jprot.2017.11.017.
[135] Yang M, Liu X, Luo Q, et al. An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy[J].J Nanobiotechnology, 2020, 18(1):100.DOI:10.1186/s12951-020-00656-9.
[136] Yang M, Luo Q, Chen X, et al. Bitter melon derived extracellular vesicles enhance the therapeutic effects and reduce the drug resistance of 5-fluorouracil on oral squamous cell carcinoma[J].J Nanobiotechnology, 2021, 19(1):259.DOI:10.1186/s12951-021-00995-1.
[137] Song H, Canup B S B, Ngo V L, et al. Internalization of garlicderived nanovesicles on liver cells is triggered by interaction with CD98[J].ACS Omega, 2020, 5(36):23118-23128.
[138] Greten F R, Grivennikov S I. Inflammation and cancer:triggers, mechanisms, and consequences[J].Immunity, 2019, 51(1):27-41.
[139] Kim K, Jung J H, Yoo H J, et al. Anti-metastatic effects of plant sapderived extracellular vesicles in a 3D microfluidic cancer metastasis model[J].J Funct Biomater, 2020, 11(3):49.DOI:10.3390/jfb11030049.
[140] Nazimek K, Bryniarski K. Perspectives in manipulating EVs for therapeutic applications:focus on cancer treatment[J].Int J Mol Sci, 2020, 21(13):4623.DOI:10.3390/ijms21134623.
[141] O'brien K, Breyne K, Ughetto S, et al. RNA delivery by extracellular vesicles in mammalian cells and its applications[J].Nat Rev Mol Cell Biol, 2020, 21(10):585-606.
[142] Leidal A M, Huang H H, Marsh T, et al. The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles[J].Nat Cell Biol, 2020, 22(2):187-199.
[143] Garcia-Martin R, Wang G, Brandão B B, et al. MicroRNA sequence codes for small extracellular vesicle release and cellular retention[J].Nature, 2022, 601(7893):446-451.
[144] Votteler J, Ogohara C, Yi S, et al. Designed proteins induce the formation of nanocage-containing extracellular vesicles[J].Nature, 2016, 540(7632):292-295.
[145] Wu C, Xu Q, Wang H, et al. Neutralization of SARS-CoV-2 pseudovirus using ACE2-engineered extracellular vesicles[J].Acta Pharm Sin B, 2021.DOI:10.1016/j.apsb.2021.09.004.
[146] Cheng Q, Dai Z, Shi X, et al. Expanding the toolbox of exosomebased modulators of cell functions[J].Biomaterials, 2021, 277:121129.DOI:10.1016/j.biomaterials.2021.121129.
[147] Katakowski M, Buller B, Zheng X, et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth[J].Cancer Lett, 2013, 335(1):201-204.
[148] Lou G, Song X, Yang F, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma[J].J Hematol Oncol, 2015, 8:122.DOI:10.1186/s13045-015-0220-7.
[149] Bose R J C, Uday Kumar S, Zeng Y, et al. Tumor cell-derived extracellular vesicle-coated nanocarriers:an efficient theranostic platform for the cancer-specific delivery of anti-miR-21 and imaging agents[J].ACS Nano, 2018, 12(11):10817-10832.
[150] Fu Z, Zhang X, Zhou X, et al. In vivo self-assembled small RNAs as a new generation of RNAi therapeutics[J].Cell Res, 2021, 31(6):631-648.
[151] Hung M E, Leonard J N. A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery[J].J Extracell Vesicles, 2016, 5:31027.DOI:10.3402/jev.v5.31027.
[152] Jang S C, Kim O Y, Yoon C M, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors[J].ACS Nano, 2013, 7(9):7698-7710.
[153] Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system:the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes[J].Mol Ther, 2010, 18(9):1606-1614.
[154] You J Y, Kang S J, Rhee W J. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells[J].Bioact Mater, 2021, 6(12):4321-4332.
[155] Nasiri Kenari A, Cheng L, Hill A F. Methods for loading therapeutics into extracellular vesicles and generating extracellular vesicles mimetic-nanovesicles[J].Methods, 2020, 177:103-113.DOI:10.1016/j.ymeth.2020.01.001.
[156] Lamichhane T N, Raiker R S, Jay S M. Exogenous DNA loading into extracellular vesicles via electroporation is size-dependent and enables limited gene delivery[J].Mol Pharm, 2015, 12(10):3650-3657.
[157] Pomatto M A C, Bussolati B, D'Antico S, et al. Improved loading of plasma-derived extracellular vesicles to encapsulate antitumor miRNAs[J].Mol Ther Methods Clin Dev, 2019, 13:133-144.DOI:10.1016/j.omtm.2019.01.001.
[158] Kooijmans S A A, Stremersch S, Braeckmans K, et al. Electroporationinduced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles[J].J Control Release, 2013, 172(1):229-238.
[159] Hood J L, Scott M J, Wickline S A. Maximizing exosome colloidal stability following electroporation[J].Anal Biochem, 2014, 448:41-49.DOI:10.1016/j.ab.2013.12. 001.
[160] Bosch S, de Beaurepaire L, Allard M, et al. Trehalose prevents aggregation of exosomes and cryodamage[J].Sci Rep, 2016, 6:36162.DOI:10.1038/srep36162.
[161] Fuhrmann G, Serio A, Mazo M, et al. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins[J].J Control Release, 2015, 205:35-44.DOI:10.1016/j.jconrel.2014.11.029.
[162] Lennaárd A J, Mamand D R, Wiklander R J, et al. Optimised electroporation for loading of extracellular vesicles with doxorubicin[J].Pharmaceutics, 2021, 14(1):38.DOI:10.3390/pharmaceutics14010038.
[163] Felgner P L, Gadek T R, Holm M, et al. Lipofection:a highly efficient, lipid-mediated DNA-transfection procedure[J].Proc Natl Acad Sci USA, 1987, 84(21):7413-7417.
[164] Gresch O, Engel F B, Nesic D, et al. New non-viral method for gene transfer into primary cells[J].Methods, 2004, 33(2):151-163.
[165] Ohno S, Takanashi M, Sudo K, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells[J].Mol Ther, 2013, 21(1):185-191.
[166] Zhang D, Lee H, Zhu Z, et al. Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro andin vivo[J].Am J Physiol Lung Cell Mol Physiol, 2017, 312(1):L110-L121.
[167] Patel N, Kommineni N, Surapaneni S K, et al. Cannabidiol loaded extracellular vesicles sensitize triple-negative breast cancer to doxorubicin in both in-vitro and in vivo models[J].Int J Pharm, 2021, 607:120943.DOI:10.1016/j.ijpharm.2021.120943.
[168] Haney M J, Klyachko N L, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson's disease therapy[J].J Control Release, 2015, 207:18-30.DOI:10.1016/j.jconrel.2015.03.033.
[169] Nizamudeen Z A, Xerri R, Parmenter C, et al. Low-power sonication can alter extracellular vesicle size and properties[J].Cells, 2021, 10(9):2413.DOI:10.3390/cells10092413.
[170] Rajendran R L, Paudel S, Gangadaran P, et al. Extracellular vesicles act as nano-transporters of tyrosine kinase inhibitors to revert Iodine avidity in thyroid cancer[J].Pharmaceutics, 2021, 13(2):248.DOI:10.3390/pharmaceutics13020248.
[171] Tkach M, Théry C. Communication by extracellular vesicles:where we are and where we need to go[J].Cell, 2016, 164(6):1226-1232.
[172] Alvarez-Erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes[J].Nat Biotechnol, 2011, 29(4):341-345.
[173] Voldborg B R, Damstrup L, Spang-Thomsen M, et al. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials[J].Ann Oncol, 1997, 8(12):1197-1206.
[174] Friedlaender A, Subbiah V, Russo A, et al. EGFR and HER2 exon 20 insertions in solid tumours:from biology to treatment[J].Nat Rev Clin Oncol, 2022, 19(1):51-69.
[175] Hung M E, Leonard J N. Stabilization of exosome-targeting peptides via engineered glycosylation[J].J Biol Chem, 2015, 290(13):8166-8172.
[176] Kooijmans S A A, Gitz-Francois J J J M, Schiffelers R M, et al.Recombinant phosphatidylserine-binding nanobodies for targeting of extracellular vesicles to tumor cells:a plug-and-play approach[J].Nanoscale, 2018, 10(5):2413-2426.
[177] Kooijmans S A A, Aleza C G, Roffler S R, et al. Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting[J].J Extracell Vesicles, 2016, 5:31053.DOI:10.3402/jev.v5.31053.
[178] Peng L H, Wang M Z, Chu Y, et al. Engineering bacterial outer membrane vesicles as transdermal nanoplatforms for photo-TRAIL-programmed therapy against melanoma[J].Sci Adv, 2020, 6(27):eaba2735.DOI:10.1126/sciadv.aba2735.
[179] Gujrati V, Kim S, Kim S H, et al. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy[J].ACS Nano, 2014, 8(2):1525-1537.
[180] Kim O Y, Dinh N T H, Park H T, et al. Bacterial protoplastderived nanovesicles for tumor targeted delivery of chemotherapeutics[J].Biomaterials, 2017, 113:68-79.DOI:10.1016/j.biomaterials.2016.10.037.
[181] Zhang P, Dong B, Zeng E, et al. In vivo tracking of multiple tumor exosomes labeled by phospholipid-based bioorthogonal conjugation[J].Anal Chem, 2018, 90(19):11273-11279.
[182] Zhang E, Liu Y, Han C, et al. Visualization and identification of bioorthogonally labeled exosome proteins following systemic administration in mice[J].Front Cell Dev Biol, 2021, 9:657456.DOI:10.3389/fcell.2021.657456.
[183] Wang M, Altinoglu S, Takeda Y S, et al. Integrating protein engineering and bioorthogonal click conjugation for extracellular vesicle modulation and intracellular delivery[J].PLoS One, 2015, 10(11):e0141860.DOI:10.1371/journal.pone.0141860.
[184] Lim G T, You D G, Han H S, et al. Bioorthogonally surface-edited extracellular vesicles based on metabolic glycoengineering for CD44-mediated targeting of inflammatory diseases[J].J Extracell Vesicles, 2021, 10(5):e12077.DOI:10.1002/jev2.12077.
[185] Scinto S L, Bilodeau D A, Hincapie R, et al. Bioorthogonal chemistry[J].Nat Rev Methods Primers, 2021, 1:30.DOI:10.1038/s43586-021-00028-z.
[186] Bird R E, Lemmel S A, Yu X, et al. Bioorthogonal chemistry and its applications[J].Bioconjug Chem, 2021, 32(12):2457-2479.
[187] Song S, Shim M K, Lim S, et al. In situ one-step fluorescence labeling strategy of exosomes via bioorthogonal click chemistry for real-time exosome tracking in vitro and in vivo[J].Bioconjug Chem, 2020, 31(5):1562-1574.
[188] Pham T C, Jayasinghe M K, Pham T T, et al. Covalent conjugation of extracellular vesicles with peptides and nanobodies for targeted therapeutic delivery[J].J Extracell Vesicles, 2021, 10(4):e12057.DOI:10.1002/jev2.12057.
[189] Kooijmans S A A, Fliervoet L A L, van der Meel R, et al. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time[J].J Control Release, 2016, 224:77-85.DOI:10.1016/j.jconrel.2016.01.009.
[190] Haraszti R A, Miller R, Didiot M C, et al. Optimized cholesterolsiRNA chemistry improves productive loading onto extracellular vesicles[J].Mol Ther, 2018, 26(8):1973-1982.
[191] Biscans A, Haraszti R A, Echeverria D, et al. Hydrophobicity of lipidconjugated siRNAs predicts productive loading to small extracellular vesicles[J].Mol Ther, 2018, 26(6):1520-1528.
[192] Didiot M C, Haraszti R A, Aronin N, et al. Loading of extracellular vesicles with hydrophobically modified siRNAs[J].Methods Mol Biol, 2018, 1740:199-214.DOI:10.1007/1978-1-4939-7652-2_16.
[193] Yerneni S S, Lathwal S, Shrestha P, et al. Rapid on-demand extracellular vesicle augmentation with versatile oligonucleotide tethers[J].ACS Nano, 2019, 13(9):10555-10565.
[194] Zhang M, Xiao B, Wang H, et al. Edible ginger-derived nano-lipids loaded with doxorubicin as a novel drug-delivery approach for colon cancer therapy[J].Mol Ther, 2016, 24(10):1783-1796.
[195] Zhang M, Yang C, Yan X, et al. Highly biocompatible functionalized layer-by-layer Ginger lipid nano vectors targeting P-selectin for delivery of doxorubicin to treat colon cancer[J].Adv Ther, 2019, 2(12):1900129.DOI:10.1002/adtp.201900129.
[196] Li Z, Wang H, Yin H, et al. Arrowtail RNA for ligand display on ginger exosome-like nanovesicles to systemic deliver siRNA for cancer suppression[J].Sci Rep, 2018, 8(1):14644.DOI:10.1038/s41598-018-32953-7.
[197] Wang Q, Zhuang X, Mu J, et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids[J].Nat Commun, 2013, 4:1867.DOI:10.1038/ncomms2886.
[198] Niu W, Xiao Q, Wang X, et al. A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicin-loaded heparin-based nanoparticles for glioma therapy[J].Nano Lett, 2021, 21(3):1484-1492.
[199] Zhuang Q, Xu J, Deng D, et al. Bacteria-derived membrane vesicles to advance targeted photothermal tumor ablation[J].Biomaterials, 2021, 268:120550.DOI:10.1016/j.biomaterials.2020.120550.
[200] Meehan K, Vella L J. The contribution of tumour-derived exosomes to the hallmarks of cancer[J].Crit Rev Clin Lab Sci, 2016, 53(2):121-131. -
期刊类型引用(3)
1. 李俊言,王文苹,张祎,杨枝中. 植物类中药来源囊泡的研究进展. 浙江大学学报(医学版). 2023(03): 349-360 . 百度学术
2. 田有溪,师嘉欣,李子毅,彭新生,邱宏. 细胞外囊泡产生机制研究进展. 中南药学. 2023(12): 3247-3255 . 百度学术
3. 居怡,SERAGAmani Hamood Ali,施戈韬,高博. 外泌体作为药物递送载体的研究进展. 药学进展. 2023(11): 804-816 . 本站查看
其他类型引用(3)
计量
- 文章访问数: 756
- HTML全文浏览量: 33
- PDF下载量: 60
- 被引次数: 6